Hydrodyn output missing

hello,
I’m working on the volturn US 15 MW wind turbine.
I want to get the following outputs from hydrodyn:
“Wave1Elev”
“HydroFxi”
“AddFxi”
“HdrStcFxi”
“HdrStcFyi”
“HdrStcFzi”
“HdrStcMxi”
“HdrStcMyi”
“HdrStcMzi”
“RdtnFxi”
“RdtnFyi”
“RdtnFzi”
“RdtnMxi”
“RdtnMyi”
“RdtnMzi”
but only the first two outputs are correctly measured.
what am I missing? the hydrodyn file is this:

------- HydroDyn v2.03.* Input File --------------------------------------------
IEA 15 MW offshore reference model on UMaine VolturnUS-S semi-submersible floating platform
False Echo - Echo the input file data (flag)
---------------------- ENVIRONMENTAL CONDITIONS --------------------------------
1025 WtrDens - Water density (kg/m^3)
200 WtrDpth - Water depth (meters)
0 MSL2SWL - Offset between still-water level and mean sea level (meters) [positive upward; unused when WaveMod = 6; must be zero if PotMod=1 or 2]
---------------------- WAVES ---------------------------------------------------
0 WaveMod - Incident wave kinematics model {0: none=still water, 1: plane progressive (regular), 2: JONSWAP/Pierson-Moskowitz spectrum (irregular), 3: user-defind spectrum from routine UserWaveSpctrm (irregular)} (switch)
0 WaveStMod - Model for stretching incident wave kinematics to instantaneous free surface {0: none=no stretching, 1: vertical stretching, 2: extrapolation stretching, 3: Wheeler stretching} (switch) [unused when WaveMod=0 or when PotMod/=0]
3800.00 WaveTMax - Analysis time for incident wave calculations (sec) [unused when WaveMod=0; determines WaveDOmega=2Pi/WaveTMax in the IFFT]
0.25 WaveDT - Time step for incident wave calculations (sec) [unused when WaveMod=0; 0.1<=WaveDT<=1.0 recommended; determines WaveOmegaMax=Pi/WaveDT in the IFFT]
0 WaveHs - Significant wave height of incident waves (meters)
9 WaveTp - Peak spectral period of incident waves (sec)
1.00 WavePkShp - Peak-shape parameter of incident wave spectrum (-) or DEFAULT (string) [used only when WaveMod=2; use 1.0 for Pierson-Moskowitz]
0.001 WvLowCOff - Low cut-off frequency or lower frequency limit of the wave spectrum beyond which the wave spectrum is zeroed (rad/s) [unused when WaveMod=0, 1, or 6]
5 WvHiCOff - High cut-off frequency or upper frequency limit of the wave spectrum beyond which the wave spectrum is zeroed (rad/s) [unused when WaveMod=0, 1, or 6]
0.00 WaveDir - Incident wave propagation heading direction (degrees) [unused when WaveMod=0 or 6]
0 WaveDirMod - Directional spreading function {0: none, 1: COS2S} (-) [only used when WaveMod=2,3, or 4]
1 WaveDirSpread - Wave direction spreading coefficient ( > 0 ) (-) [only used when WaveMod=2,3, or 4 and WaveDirMod=1]
1 WaveNDir - Number of wave directions (-) [only used when WaveMod=2,3, or 4 and WaveDirMod=1; odd number only]
90 WaveDirRange - Range of wave directions (full range: WaveDir +/- 1/2WaveDirRange) (degrees) [only used when WaveMod=2,3,or 4 and WaveDirMod=1]
1 WaveSeed(1) - First random seed of incident waves [-2147483648 to 2147483647] (-) [unused when WaveMod=0, 5, or 6]
1 WaveSeed(2) - Second random seed of incident waves [-2147483648 to 2147483647] (-) [unused when WaveMod=0, 5, or 6]
FALSE WaveNDAmp - Flag for normally distributed amplitudes (flag) [only used when WaveMod=2, 3, or 4]
“none” WvKinFile - Root name of externally generated wave data file(s) (quoted string) [used only when WaveMod=5 or 6]
1 NWaveElev - Number of points where the incident wave elevations can be computed (-) [maximum of 9 output locations]
0 WaveElevxi - List of xi-coordinates for points where the incident wave elevations can be output (meters) [NWaveElev points, separated by commas or white space; usused if NWaveElev = 0]
0 WaveElevyi - List of yi-coordinates for points where the incident wave elevations can be output (meters) [NWaveElev points, separated by commas or white space; usused if NWaveElev = 0]
---------------------- 2ND-ORDER WAVES ----------------------------------------- [unused with WaveMod=0 or 6]
False WvDiffQTF - Full difference-frequency 2nd-order wave kinematics (flag)
False WvSumQTF - Full summation-frequency 2nd-order wave kinematics (flag)
0 WvLowCOffD - Low frequency cutoff used in the difference-frequencies (rad/s) [Only used with a difference-frequency method]
0.7378630 WvHiCOffD - High frequency cutoff used in the difference-frequencies (rad/s) [Only used with a difference-frequency method]
0.314159 WvLowCOffS - Low frequency cutoff used in the summation-frequencies (rad/s) [Only used with a summation-frequency method]
3.2 WvHiCOffS - High frequency cutoff used in the summation-frequencies (rad/s) [Only used with a summation-frequency method]
---------------------- CURRENT ------------------------------------------------- [unused with WaveMod=6]
0 CurrMod - Current profile model {0: none=no current, 1: standard, 2: user-defined from routine UserCurrent} (switch)
0 CurrSSV0 - Sub-surface current velocity at still water level (m/s) [used only when CurrMod=1]
“DEFAULT” CurrSSDir - Sub-surface current heading direction (degrees) or DEFAULT (string) [used only when CurrMod=1]
20 CurrNSRef - Near-surface current reference depth (meters) [used only when CurrMod=1]
0 CurrNSV0 - Near-surface current velocity at still water level (m/s) [used only when CurrMod=1]
0 CurrNSDir - Near-surface current heading direction (degrees) [used only when CurrMod=1]
0 CurrDIV - Depth-independent current velocity (m/s) [used only when CurrMod=1]
0 CurrDIDir - Depth-independent current heading direction (degrees) [used only when CurrMod=1]
---------------------- FLOATING PLATFORM --------------------------------------- [unused with WaveMod=6]
1 PotMod - Potential-flow model {0: none=no potential flow, 1: frequency-to-time-domain transforms based on WAMIT output, 2: fluid-impulse theory (FIT)} (switch)
1 ExctnMod - Wave-excitation model {0: no wave-excitation calculation, 1: DFT, 2: state-space} (switch) [only used when PotMod=1; STATE-SPACE REQUIRES .ssexctn INPUT FILE]
1 RdtnMod - Radiation memory-effect model {0: no memory-effect calculation, 1: convolution, 2: state-space} (switch) [only used when PotMod=1; STATE-SPACE REQUIRES .ss INPUT FILE]
60 RdtnTMax - Analysis time for wave radiation kernel calculations (sec) [only used when PotMod=1; determines RdtnDOmega=Pi/RdtnTMax in the cosine transform; MAKE SURE THIS IS LONG ENOUGH FOR THE RADIATION IMPULSE RESPONSE FUNCTIONS TO DECAY TO NEAR-ZERO FOR THE GIVEN PLATFORM!]
“DEFAULT” RdtnDT - Time step for wave radiation kernel calculations (sec) [only used when PotMod=1; DT<=RdtnDT<=0.1 recommended; determines RdtnOmegaMax=Pi/RdtnDT in the cosine transform]
1 NBody - Number of WAMIT bodies to be used (-) [>=1; only used when PotMod=1. If NBodyMod=1, the WAMIT data contains a vector of size 6
NBody x 1 and matrices of size 6
NBody x 6
NBody; if NBodyMod>1, there are NBody sets of WAMIT data each with a vector of size 6 x 1 and matrices of size 6 x 6]
1 NBodyMod - Body coupling model {1: include coupling terms between each body and NBody in HydroDyn equals NBODY in WAMIT, 2: neglect coupling terms between each body and NBODY=1 with XBODY=0 in WAMIT, 3: Neglect coupling terms between each body and NBODY=1 with XBODY=/0 in WAMIT} (switch) [only used when PotMod=1]
“hydro” PotFile - Root name of potential-flow model data; WAMIT output files containing the linear, nondimensionalized, hydrostatic restoring matrix (.hst), frequency-dependent hydrodynamic added mass matrix and damping matrix (.1), and frequency- and direction-dependent wave excitation force vector per unit wave amplitude (.3) (quoted string) [MAKE SURE THE FREQUENCIES INHERENT IN THESE WAMIT FILES SPAN THE PHYSICALLY-SIGNIFICANT RANGE OF FREQUENCIES FOR THE GIVEN PLATFORM; THEY MUST CONTAIN THE ZERO- AND INFINITE-FREQUENCY LIMITS!]
1 WAMITULEN - Characteristic body length scale used to redimensionalize WAMIT output (meters) [only used when PotMod=1]
0.0 PtfmRefxt - The xt offset of the body reference point(s) from (0,0,0) (meters) [1 to NBody] [only used when PotMod=1]
0.0 PtfmRefyt - The yt offset of the body reference point(s) from (0,0,0) (meters) [1 to NBody] [only used when PotMod=1]
0.0 PtfmRefzt - The zt offset of the body reference point(s) from (0,0,0) (meters) [1 to NBody] [only used when PotMod=1. If NBodyMod=2,PtfmRefzt=0.0]
0.0 PtfmRefztRot - The rotation about zt of the body reference frame(s) from xt/yt (degrees) [1 to NBody] [only used when PotMod=1]
20206.34889 PtfmVol0 - Displaced volume of water when the platform is in its undisplaced position (m^3) [only used when PotMod=1; USE THE SAME VALUE COMPUTED BY WAMIT AS OUTPUT IN THE .OUT FILE!]
0 PtfmCOBxt - The xt offset of the center of buoyancy (COB) from the platform reference point (meters) [only used when PotMod=1]
0 PtfmCOByt - The yt offset of the center of buoyancy (COB) from the platform reference point (meters) [only used when PotMod=1]
---------------------- 2ND-ORDER FLOATING PLATFORM FORCES ---------------------- [unused with WaveMod=0 or 6, or PotMod=0 or 2]
0 MnDrift - Mean-drift 2nd-order forces computed {0: None; [7, 8, 9, 10, 11, or 12]: WAMIT file to use} [Only one of MnDrift, NewmanApp, or DiffQTF can be non-zero]
0 NewmanApp - Mean- and slow-drift 2nd-order forces computed with Newman’s approximation {0: None; [7, 8, 9, 10, 11, or 12]: WAMIT file to use} [Only one of MnDrift, NewmanApp, or DiffQTF can be non-zero. Used only when WaveDirMod=0]
0 DiffQTF - Full difference-frequency 2nd-order forces computed with full QTF {0: None; [10, 11, or 12]: WAMIT file to use} [Only one of MnDrift, NewmanApp, or DiffQTF can be non-zero]
0 SumQTF - Full summation -frequency 2nd-order forces computed with full QTF {0: None; [10, 11, or 12]: WAMIT file to use}
---------------------- PLATFORM ADDITIONAL STIFFNESS AND DAMPING --------------
0 AddF0 - Additional preload (N, N-m) [If NBodyMod=1, one size 6*NBody x 1 vector; if NBodyMod>1, NBody size 6 x 1 vectors]
0
0
0
0
0
0 0 0 0 0 0 AddCLin - Additional linear stiffness (N/m, N/rad, N-m/m, N-m/rad)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 AddBLin - Additional linear damping(N/(m/s), N/(rad/s), N-m/(m/s), N-m/(rad/s))
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
9.23E+05 0.00E+00 0.00E+00 0.00E+00 -8.92E+06 0.00E+00 AddBQuad - Additional quadratic drag(N/(m/s)^2, N/(rad/s)^2, N-m(m/s)^2, N-m/(rad/s)^2)
0.00E+00 9.23E+05 0.00E+00 8.92E+06 0.00E+00 0.00E+00
0.00E+00 0.00E+00 2.30E+06 0.00E+00 0.00E+00 0.00E+00
0.00E+00 8.92E+06 0.00E+00 1.68E+10 0.00E+00 0.00E+00
-8.92E+06 0.00E+00 0.00E+00 0.00E+00 1.68E+10 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.80E+10
---------------------- AXIAL COEFFICIENTS --------------------------------------
(other)


---------------------- OUTPUT --------------------------------------------------
TRUE HDSum - Output a summary file [flag]
False OutAll - Output all user-specified member and joint loads (only at each member end, not interior locations) [flag]
2 OutSwtch - Output requested channels to: [1=Hydrodyn.out, 2=GlueCode.out, 3=both files]
“ES11.4e2” OutFmt - Output format for numerical results (quoted string) [not checked for validity!]
“A11” OutSFmt - Output format for header strings (quoted string) [not checked for validity!]
---------------------- OUTPUT CHANNELS -----------------------------------------
“Wave1Elev”
“HydroFxi”
“AddFxi”
“HdrStcFxi”
“HdrStcFyi”
“HdrStcFzi”
“HdrStcMxi”
“HdrStcMyi”
“HdrStcMzi”
“RdtnFxi”
“RdtnFyi”
“RdtnFzi”
“RdtnMxi”
“RdtnMyi”
“RdtnMzi”
END of output channels and end of file. (the word “END” must appear in the first 3 columns of this line)

Dear @Massimo.Sirigu,

When the multi-body potential-flow solution capability was added to OpenFAST, as of v2.6 and newer, the names of many of the outputs were changed to reflect which body the load comes from. See the updated list of HydroDyn output parameters documented here: https://openfast.readthedocs.io/en/main/_downloads/3f19498a5dc774461e022b671ff01ec6/OutListParameters.xlsx.

Best regards,