Discrepancies in User-Defined Wave Elevation at Simulation Start and End

Hello,
I am conducting analysis of the 5MW OC3 offshore wind turbine (OWT) using OpenFAST v3.1.0. To simulate wave conditions, I am utilizing WaveMod = 5, which allows for the use of externally generated wave elevation time series as input to HydroDyn. While the user-defined wave elevation input was successfully integrated without any errors, I observed discrepancies when comparing the input wave elevation profile to the wave elevation output generated by OpenFAST. Specifically, the mismatch occurs at the start of the simulation (approximately the first 10 seconds, referred to as Zone 1 in the figure) and near the end of the simulation (the last few seconds, referred to as Zone 2 in the figure). Between these periods, the wave elevation output matches the input data very well.

The initial discrepancy suggests that OpenFAST may assign random or default values to the wave elevation during the first few seconds of the simulation, rather than adhering to the user-defined input. I am seeking insights into the possible reasons for these discrepancies at the start and end of the simulation. For reference, I have attached the HydroDyn input file along with the time series used for the wave elevation input. Any guidance on this matter would be greatly appreciated.

------- HydroDyn v2.03.* Input File --------------------------------------------
NREL 5.0 MW offshore baseline floating platform input properties for the OC3 Monopile.
False Echo - Echo the input file data (flag)
---------------------- ENVIRONMENTAL CONDITIONS --------------------------------
“default” WtrDens - Water density (kg/m^3)
“default” WtrDpth - Water depth (meters)
“default” MSL2SWL - Offset between still-water level and mean sea level (meters) [positive upward; unused when WaveMod = 6; must be zero if PotMod=1 or 2]
---------------------- WAVES ---------------------------------------------------
5 WaveMod - Incident wave kinematics model {0: none=still water, 1: regular (periodic), 1P#: regular with user-specified phase, 2: JONSWAP/Pierson-Moskowitz spectrum (irregular), 3: White noise spectrum (irregular), 4: user-defined spectrum from routine UserWaveSpctrm (irregular), 5: Externally generated wave-elevation time series, 6: Externally generated full wave-kinematics time series [option 6 is invalid for PotMod/=0]} (switch)
0 WaveStMod - Model for stretching incident wave kinematics to instantaneous free surface {0: none=no stretching, 1: vertical stretching, 2: extrapolation stretching, 3: Wheeler stretching} (switch) [unused when WaveMod=0 or when PotMod/=0]
1500 WaveTMax - Analysis time for incident wave calculations (sec) [unused when WaveMod=0; determines WaveDOmega=2Pi/WaveTMax in the IFFT]
0.25 WaveDT - Time step for incident wave calculations (sec) [unused when WaveMod=0; 0.1<=WaveDT<=1.0 recommended; determines WaveOmegaMax=Pi/WaveDT in the IFFT]
3.66 WaveHs - Significant wave height of incident waves (meters) [used only when WaveMod=1, 2, or 3]
7.12 WaveTp - Peak-spectral period of incident waves (sec) [used only when WaveMod=1 or 2]
“DEFAULT” WavePkShp - Peak-shape parameter of incident wave spectrum (-) or DEFAULT (string) [used only when WaveMod=2; use 1.0 for Pierson-Moskowitz]
0.15708 WvLowCOff - Low cut-off frequency or lower frequency limit of the wave spectrum beyond which the wave spectrum is zeroed (rad/s) [unused when WaveMod=0, 1, or 6]
3.2 WvHiCOff - High cut-off frequency or upper frequency limit of the wave spectrum beyond which the wave spectrum is zeroed (rad/s) [unused when WaveMod=0, 1, or 6]
0 WaveDir - Incident wave propagation heading direction (degrees) [unused when WaveMod=0 or 6]
0 WaveDirMod - Directional spreading function {0: none, 1: COS2S} (-) [only used when WaveMod=2,3, or 4]
1 WaveDirSpread - Wave direction spreading coefficient ( > 0 ) (-) [only used when WaveMod=2,3, or 4 and WaveDirMod=1]
1 WaveNDir - Number of wave directions (-) [only used when WaveMod=2,3, or 4 and WaveDirMod=1; odd number only]
90 WaveDirRange - Range of wave directions (full range: WaveDir +/- 1/2WaveDirRange) (degrees) [only used when WaveMod=2,3,or 4 and WaveDirMod=1]
123456789 WaveSeed(1) - First random seed of incident waves [-2147483648 to 2147483647] (-) [unused when WaveMod=0, 5, or 6]
RANLUX WaveSeed(2) - Second random seed of incident waves [-2147483648 to 2147483647] for intrinsic pRNG, or an alternative pRNG: “RanLux” (-) [unused when WaveMod=0, 5, or 6]
TRUE WaveNDAmp - Flag for normally distributed amplitudes (flag) [only used when WaveMod=2, 3, or 4]
“WaveSimulation1000” WvKinFile - Root name of externally generated wave data file(s) (quoted string) [used only when WaveMod=5 or 6]
1 NWaveElev - Number of points where the incident wave elevations can be computed (-) [maximum of 9 output locations]
0 WaveElevxi - List of xi-coordinates for points where the incident wave elevations can be output (meters) [NWaveElev points, separated by commas or white space; usused if NWaveElev = 0]
0 WaveElevyi - List of yi-coordinates for points where the incident wave elevations can be output (meters) [NWaveElev points, separated by commas or white space; usused if NWaveElev = 0]
---------------------- 2ND-ORDER WAVES ----------------------------------------- [unused with WaveMod=0 or 6]
False WvDiffQTF - Full difference-frequency 2nd-order wave kinematics (flag)
False WvSumQTF - Full summation-frequency 2nd-order wave kinematics (flag)
0 WvLowCOffD - Low frequency cutoff used in the difference-frequencies (rad/s) [Only used with a difference-frequency method]
3.04292 WvHiCOffD - High frequency cutoff used in the difference-frequencies (rad/s) [Only used with a difference-frequency method]
0.314159 WvLowCOffS - Low frequency cutoff used in the summation-frequencies (rad/s) [Only used with a summation-frequency method]
3.2 WvHiCOffS - High frequency cutoff used in the summation-frequencies (rad/s) [Only used with a summation-frequency method]
---------------------- CURRENT ------------------------------------------------- [unused with WaveMod=6]
0 CurrMod - Current profile model {0: none=no current, 1: standard, 2: user-defined from routine UserCurrent} (switch)
0 CurrSSV0 - Sub-surface current velocity at still water level (m/s) [used only when CurrMod=1]
“DEFAULT” CurrSSDir - Sub-surface current heading direction (degrees) or DEFAULT (string) [used only when CurrMod=1]
20 CurrNSRef - Near-surface current reference depth (meters) [used only when CurrMod=1]
0 CurrNSV0 - Near-surface current velocity at still water level (m/s) [used only when CurrMod=1]
0 CurrNSDir - Near-surface current heading direction (degrees) [used only when CurrMod=1]
0 CurrDIV - Depth-independent current velocity (m/s) [used only when CurrMod=1]
0 CurrDIDir - Depth-independent current heading direction (degrees) [used only when CurrMod=1]
---------------------- FLOATING PLATFORM --------------------------------------- [unused with WaveMod=6]
0 PotMod - Potential-flow model {0: none=no potential flow, 1: frequency-to-time-domain transforms based on WAMIT output, 2: fluid-impulse theory (FIT)} (switch)
1 ExctnMod - Wave-excitation model {0: no wave-excitation calculation, 1: DFT, 2: state-space} (switch) [only used when PotMod=1; STATE-SPACE REQUIRES .ssexctn INPUT FILE]
0 RdtnMod - Radiation memory-effect model {0: no memory-effect calculation, 1: convolution, 2: state-space} (switch) [only used when PotMod=1; STATE-SPACE REQUIRES .ss INPUT FILE]
60 RdtnTMax - Analysis time for wave radiation kernel calculations (sec) [only used when PotMod=1 and RdtnMod>0; determines RdtnDOmega=Pi/RdtnTMax in the cosine transform; MAKE SURE THIS IS LONG ENOUGH FOR THE RADIATION IMPULSE RESPONSE FUNCTIONS TO DECAY TO NEAR-ZERO FOR THE GIVEN PLATFORM!]
0.0125 RdtnDT - Time step for wave radiation kernel calculations (sec) [only used when PotMod=1 and ExctnMod>0 or RdtnMod>0; DT<=RdtnDT<=0.1 recommended; determines RdtnOmegaMax=Pi/RdtnDT in the cosine transform]
1 NBody - Number of WAMIT bodies to be used (-) [>=1; only used when PotMod=1. If NBodyMod=1, the WAMIT data contains a vector of size 6
NBody x 1 and matrices of size 6
NBody x 6
NBody; if NBodyMod>1, there are NBody sets of WAMIT data each with a vector of size 6 x 1 and matrices of size 6 x 6]
1 NBodyMod - Body coupling model {1: include coupling terms between each body and NBody in HydroDyn equals NBODY in WAMIT, 2: neglect coupling terms between each body and NBODY=1 with XBODY=0 in WAMIT, 3: Neglect coupling terms between each body and NBODY=1 with XBODY=/0 in WAMIT} (switch) [only used when PotMod=1]
“unused” PotFile - Root name of potential-flow model data; WAMIT output files containing the linear, nondimensionalized, hydrostatic restoring matrix (.hst), frequency-dependent hydrodynamic added mass matrix and damping matrix (.1), and frequency- and direction-dependent wave excitation force vector per unit wave amplitude (.3) (quoted string) [1 to NBody if NBodyMod>1] [MAKE SURE THE FREQUENCIES INHERENT IN THESE WAMIT FILES SPAN THE PHYSICALLY-SIGNIFICANT RANGE OF FREQUENCIES FOR THE GIVEN PLATFORM; THEY MUST CONTAIN THE ZERO- AND INFINITE-FREQUENCY LIMITS!]
1 WAMITULEN - Characteristic body length scale used to redimensionalize WAMIT output (meters) [1 to NBody if NBodyMod>1] [only used when PotMod=1]
0.0 PtfmRefxt - The xt offset of the body reference point(s) from (0,0,0) (meters) [1 to NBody] [only used when PotMod=1]
0.0 PtfmRefyt - The yt offset of the body reference point(s) from (0,0,0) (meters) [1 to NBody] [only used when PotMod=1]
0.0 PtfmRefzt - The zt offset of the body reference point(s) from (0,0,0) (meters) [1 to NBody] [only used when PotMod=1. If NBodyMod=2,PtfmRefzt=0.0]
0.0 PtfmRefztRot - The rotation about zt of the body reference frame(s) from xt/yt (degrees) [1 to NBody] [only used when PotMod=1]
0 PtfmVol0 - Displaced volume of water when the body is in its undisplaced position (m^3) [1 to NBody] [only used when PotMod=1; USE THE SAME VALUE COMPUTED BY WAMIT AS OUTPUT IN THE .OUT FILE!]
0.0 PtfmCOBxt - The xt offset of the center of buoyancy (COB) from (0,0) (meters) [1 to NBody] [only used when PotMod=1]
0.0 PtfmCOByt - The yt offset of the center of buoyancy (COB) from (0,0) (meters) [1 to NBody] [only used when PotMod=1]
---------------------- 2ND-ORDER FLOATING PLATFORM FORCES ---------------------- [unused with WaveMod=0 or 6, or PotMod=0 or 2]
0 MnDrift - Mean-drift 2nd-order forces computed {0: None; [7, 8, 9, 10, 11, or 12]: WAMIT file to use} [Only one of MnDrift, NewmanApp, or DiffQTF can be non-zero. If NBody>1, MnDrift /=8]
0 NewmanApp - Mean- and slow-drift 2nd-order forces computed with Newman’s approximation {0: None; [7, 8, 9, 10, 11, or 12]: WAMIT file to use} [Only one of MnDrift, NewmanApp, or DiffQTF can be non-zero. If NBody>1, NewmanApp/=8. Used only when WaveDirMod=0]
0 DiffQTF - Full difference-frequency 2nd-order forces computed with full QTF {0: None; [10, 11, or 12]: WAMIT file to use} [Only one of MnDrift, NewmanApp, or DiffQTF can be non-zero]
0 SumQTF - Full summation -frequency 2nd-order forces computed with full QTF {0: None; [10, 11, or 12]: WAMIT file to use}
---------------------- PLATFORM ADDITIONAL STIFFNESS AND DAMPING -------------- [unused with PotMod=0 or 2]
0 AddF0 - Additional preload (N, N-m) [If NBodyMod=1, one size 6NBody x 1 vector; if NBodyMod>1, NBody size 6 x 1 vectors]
0
0
0
0
0
0 0 0 0 0 0 AddCLin - Additional linear stiffness (N/m, N/rad, N-m/m, N-m/rad) [If NBodyMod=1, one size 6
NBody x 6NBody matrix; if NBodyMod>1, NBody size 6 x 6 matrices]
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 AddBLin - Additional linear damping(N/(m/s), N/(rad/s), N-m/(m/s), N-m/(rad/s)) [If NBodyMod=1, one size 6
NBody x 6NBody matrix; if NBodyMod>1, NBody size 6 x 6 matrices]
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 AddBQuad - Additional quadratic drag(N/(m/s)^2, N/(rad/s)^2, N-m(m/s)^2, N-m/(rad/s)^2) [If NBodyMod=1, one size 6
NBody x 6*NBody matrix; if NBodyMod>1, NBody size 6 x 6 matrices]
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
---------------------- AXIAL COEFFICIENTS --------------------------------------
1 NAxCoef - Number of axial coefficients (-)
AxCoefID AxCd AxCa AxCp
(-) (-) (-) (-)
1 0.00 0.00 1.00
---------------------- MEMBER JOINTS -------------------------------------------
2 NJoints - Number of joints (-) [must be exactly 0 or at least 2]
JointID Jointxi Jointyi Jointzi JointAxID JointOvrlp [JointOvrlp= 0: do nothing at joint, 1: eliminate overlaps by calculating super member]
(-) (m) (m) (m) (-) (switch)
1 0.00000 0.00000 -20.00010 1 0
2 0.00000 0.00000 10.00000 1 0
---------------------- MEMBER CROSS-SECTION PROPERTIES -------------------------
1 NPropSets - Number of member property sets (-)
PropSetID PropD PropThck
(-) (m) (m)
1 6.00000 0.06000
---------------------- SIMPLE HYDRODYNAMIC COEFFICIENTS (model 1) --------------
SimplCd SimplCdMG SimplCa SimplCaMG SimplCp SimplCpMG SimplAxCd SimplAxCdMG SimplAxCa SimplAxCaMG SimplAxCp SimplAxCpMG
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)
1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00
---------------------- DEPTH-BASED HYDRODYNAMIC COEFFICIENTS (model 2) ---------
0 NCoefDpth - Number of depth-dependent coefficients (-)
Dpth DpthCd DpthCdMG DpthCa DpthCaMG DpthCp DpthCpMG DpthAxCd DpthAxCdMG DpthAxCa DpthAxCaMG DpthAxCp DpthAxCpMG
(m) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)
---------------------- MEMBER-BASED HYDRODYNAMIC COEFFICIENTS (model 3) --------
0 NCoefMembers - Number of member-based coefficients (-)
MemberID MemberCd1 MemberCd2 MemberCdMG1 MemberCdMG2 MemberCa1 MemberCa2 MemberCaMG1 MemberCaMG2 MemberCp1 MemberCp2 MemberCpMG1 MemberCpMG2 MemberAxCd1 MemberAxCd2 MemberAxCdMG1 MemberAxCdMG2 MemberAxCa1 MemberAxCa2 MemberAxCaMG1 MemberAxCaMG2 MemberAxCp1 MemberAxCp2 MemberAxCpMG1 MemberAxCpMG2
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)
-------------------- MEMBERS -------------------------------------------------
1 NMembers - Number of members (-)
MemberID MJointID1 MJointID2 MPropSetID1 MPropSetID2 MDivSize MCoefMod PropPot [MCoefMod=1: use simple coeff table, 2: use depth-based coeff table, 3: use member-based coeff table] [ PropPot/=0 if member is modeled with potential-flow theory]
(-) (-) (-) (-) (-) (m) (switch) (flag)
1 1 2 1 1 0.5000 1 FALSE
---------------------- FILLED MEMBERS ------------------------------------------
0 NFillGroups - Number of filled member groups (-) [If FillDens = DEFAULT, then FillDens = WtrDens; FillFSLoc is related to MSL2SWL]
FillNumM FillMList FillFSLoc FillDens
(-) (-) (m) (kg/m^3)
---------------------- MARINE GROWTH -------------------------------------------
0 NMGDepths - Number of marine-growth depths specified (-)
MGDpth MGThck MGDens
(m) (m) (kg/m^3)
---------------------- MEMBER OUTPUT LIST --------------------------------------
0 NMOutputs - Number of member outputs (-) [must be < 10]
MemberID NOutLoc NodeLocs [NOutLoc < 10; node locations are normalized distance from the start of the member, and must be >=0 and <= 1] [unused if NMOutputs=0]
(-) (-) (-)
---------------------- JOINT OUTPUT LIST ---------------------------------------
0 NJOutputs - Number of joint outputs [Must be < 10]
0 JOutLst - List of JointIDs which are to be output (-)[unused if NJOutputs=0]
---------------------- OUTPUT --------------------------------------------------
True HDSum - Output a summary file [flag]
False OutAll - Output all user-specified member and joint loads (only at each member end, not interior locations) [flag]
2 OutSwtch - Output requested channels to: [1=Hydrodyn.out, 2=GlueCode.out, 3=both files]
“ES11.4e2” OutFmt - Output format for numerical results (quoted string) [not checked for validity!]
“A11” OutSFmt - Output format for header strings (quoted string) [not checked for validity!]
---------------------- OUTPUT CHANNELS -----------------------------------------
“Wave1Elev” - Wave elevation at the WAMIT reference point (0,0)
“HydroFxi, HydroFyi, HydroFzi”
“HydroMxi, HydroMyi, HydroMzi”
END of output channels and end of file. (the word “END” must appear in the first 3 columns of this line)

Dear @Tareq.AbuAgolah,

I would guess the small discrepancies you are seeing are more the result of the internal FFTs used in the processing of the wave kinematics, which naturally assume that your user-prescribed time series are periodic, which clearly they are not. Ramping down the waves near the end of the simulation, bringing them closer to where you start the waves at time zero, should help.

Best regards,

Dear @Jason.Jonkman,

Thank you for your valuable input; it has been extremely helpful. I successfully resolved the discrepancies observed at the beginning and end of the simulation between the wave elevation input and output. However, I have encountered another issue related to the hydrodynamic loads (HydroFxi). Upon reviewing the output, I observed that the hydrodynamic loads do not start from a zero value, despite the wave elevation beginning at zero (see the attached figure). Could you please provide suggestions or guidance on how to address this issue and ensure that the hydrodynamic loads also start from zero?

Best Regards,

Dear @Tareq.AbuAgolah,

The hydrodynamic loads at time zero could be coming from something other than the wave-excitation, e.g., hydrodynamic added mass associated with nonzero substructure acceleration.

Best regards,