ENVISION

Full-System Linearization for Wind Turbines with Aeroelastically Tailored Rotor Blades in OpenFAST

Jason Jonkman, Ph.D. - NREL
Bonnie Jonkman - Envision
Andy Platt - Envision

Envision-NREL Linearization Meeting

30 October, 2018
Boulder, CO (USA)

Introduction: The OpenFAST Multi-Physics Engineering Tool

- OpenFAST is DOE/NREL's premier open-source wind turbine multi-physics engineering tool
- FAST has undergone a major restructuring, w/ a new modularization framework (v8)
- Framework originally designed w/ intent of enabling full-system linearization, but functionality is being implemented in stages

[^0]
Introduction: Why Linearize?

- OpenFAST primary used for nonlinear timedomain standards-based load analysis (ultimate \& fatigue)
- Linearization is about understanding:
- Useful for eigenanalysis, controls design, stability analysis, gradients for optimization, \& development of reduced-order models

$$
\begin{aligned}
& \underset{u \rightarrow}{\text { Module }} \begin{array}{c}
x, z \\
X, Z, Y
\end{array} \rightarrow y \\
& \dot{x}=X(x, z, u, t) \\
& 0=Z(x, z, u, t) \quad \text { with }\left|\frac{\partial Z}{\partial z}\right| \neq 0 \\
& y=Y(x, z, u, t)
\end{aligned}
$$

$$
\begin{aligned}
& u=\left.u\right|_{o p}+\Delta u \quad \text { etc. } \\
& \Delta \dot{x}=A \Delta x+B \Delta u \\
& \Delta y=C \Delta x+D \Delta u \\
& \text { with }
\end{aligned}
$$

- Verifying implementation
- This work - Linearizing BeamDyn \& coupling
- Related work in parallel - Linearization for FOWT

$$
A=\left.\left[\frac{\partial X}{\partial x}-\frac{\partial X}{\partial z}\left[\frac{\partial Z}{\partial z}\right]^{-1} \frac{\partial Z}{\partial x}\right]\right|_{o p} \text { etc. }
$$

Approach \& Methods: Operating-Point Determination

- A linear model of a nonlinear system is only valid in local vicinity of an operating point (OP)
- Current implementation allows OP to be set by given initial conditions (time zero) or a given times in nonlinear time-solution
- Note about rotations in 3D:
- Rotations don't reside in a linear space
- FAST framework stores module inputs/outputs for 3D rotations using 3×3 DCMs (Λ)
- Linearized rotational parameters taken to be 3 small-angle rotations about global $X, Y, \& Z(\Delta \vec{\theta})$
$u=\left.u\right|_{o p}+\Delta u \quad$ for most variables
$\Lambda=\left.\Lambda\right|_{\text {op }} \Delta \Lambda \quad$ for rotations
with
$\left\{\begin{array}{l}x \\ y \\ z\end{array}\right\}=\Lambda\left\{\begin{array}{l}X \\ Y \\ Z\end{array}\right\}$

Approach \& Methods: Module Linearization

Module	Linear Features	States (x, z)	Inputs (u)	Outputs (y)	Jacobian Calc.
InflowWind (IfW)	- Uniform or steady wind	- None	- Positions - Wind parameter disturbances	- Undisturbed (inflow) wind @ input positions - User-selected wind-inflow outputs	- Analytical
ElastoDyn (ED)	- Structural dynamics of: o Blades - Drivetrain o Nacelle - Tower o Platform	- Structural degrees-of-freedom (DOFs) \& their $1^{\text {st }}$ time derivatives (continuous states)	- Applied loads along blades \& tower - Applied loads on hub, nacelle, \& platform - Blade-pitch-angle command - Nacelle-yaw moment - Generator torque	- Motions along blades \& tower - Motions of hub, nacelle, \& platform - Nacelle-yaw angle \& rate - Generator speed - User-selected structural outputs (motions \&/or loads)	- Numerical centraldifference perturbation technique*
BeamDyn (BD)	- Structural dynamics of blades	- Structural degrees-of-freedom (DOFs) \& their $1^{\text {st }}$ time derivatives (continuous states)	- Motions of blade root - Applied loads along blade	- Blade-root reaction loads - Motions along blade - User-selected structural outputs (motions \&/or loads)	- Numerical centraldifference perturbation technique*
AeroDyn (AD)	- Aerodynamic stiffness \& damping - BEM or frozen wake	- Inflow angle along blades (constraint states)	- Motions along blades \& tower - Motions of hub - Undisturbed (inflow) wind along blades \& tower	- Aerodynamic applied loads along blades \& tower - User-selected aerodynamic outputs	- Numerical centraldifference perturbation technique*

*Numerical central -difference perturbation technique (see paper for treatment of 3D rotations)
 $\left.\frac{\partial X}{\partial x}\right|_{o p}=\frac{X\left(\left.x\right|_{o p}+\Delta x,\left.u\right|_{o p},\left.t\right|_{o p}\right)-X\left(\left.x\right|_{o p}-\Delta x,\left.u\right|_{o p},\left.t\right|_{o p}\right)}{2 \Delta x}$ etc.

Approach \& Methods: Rotation of States in BeamDyn

- Translational \& rotational states in BeamDyn are defined globally in (nonrotating), but are oriented $\mathrm{w} /$ root reference orientation
- For purposes of post-processing with MBC3, BeamDyn states can optionally be transformed to rotating frame during linearization $\Delta x^{R}=\underbrace{\left[\begin{array}{cccc}\left.\Lambda^{\text {Root }}\right|_{o p}\left[\Lambda^{\text {RootR }}\right]^{T} & 0 & 0 & 0 \\ 0 & \left.\Lambda^{\text {Root }}\right|_{o p}\left[\Lambda^{\text {RootR }}\right]^{T} & 0 & 0 \\ 0 & 0 & \left.\Lambda^{\text {Root }}\right|_{o p}\left[\Lambda^{\text {RootR }}\right]^{T} & 0 \\ 0 & 0 & 0 & \left.\Lambda^{\text {Root }}\right|_{o p}\left[\Lambda^{\text {RootR }}\right]^{T}\end{array}\right]}$ (

$$
\begin{array}{llll}
\Delta \dot{x}=A \Delta x+B \Delta u \\
\Delta y=C \Delta x+D \Delta u
\end{array} \quad \Rightarrow \begin{array}{ll}
\Delta \dot{x}^{R}=A^{R} \Delta x^{R}+B^{R} \Delta u \\
\Delta y=C^{R} \Delta x^{R}+D^{R} \Delta u & \text { with }
\end{array} \quad A^{R}=\left.T^{R}\right|_{o p} A\left[\left.T^{R}\right|_{o p}\right]^{T} \quad B^{R}=\left.T^{R}\right|_{o p} B
$$

Approach \& Methods: Glue-Code Linearization

- Module inputs \& outputs residing on spatial boundaries use a mesh, consisting of:
- Nodes \& elements (nodal connectivity)
- Nodal reference locations (position \& orientation)
- One or more nodal fields, including motion, load, \&/or scalar quantities
- Mesh-to-mesh mappings involve:
- Mapping search - Nearest neighbors are found
- Mapping transfer - Nodal fields are transferred
- Mapping transfers \& other module-to-module input-output coupling relationships have been linearized analytically

$$
\Delta u=\left\{\begin{array}{c}
\Delta u^{(I J W)} \\
\Delta u^{(S r v D)} \\
\Delta u^{(E D)} \\
\Delta u^{(I B D)} \\
\Delta u^{(A D)}
\end{array}\right\}
$$

$$
\left.\frac{\partial U}{\partial \tilde{u}}\right|_{o p}=\left[\left.\begin{array}{ccccc}
I & 0 & 0 & 0 & \frac{\partial U^{(I J W)}}{\partial \tilde{u}^{(A D)}} \\
0 & I & 0 & 0 & 0 \\
0 & 0 & I & \frac{\partial U^{(E D)}}{\partial \tilde{u}^{(B D)}} & \frac{\partial U^{(E D)}}{\partial \tilde{u}^{(A D)}} \\
0 & 0 & 0 & \frac{\partial U^{(B D)}}{\partial \tilde{u}^{(B D)}} & \frac{\partial U^{(B D)}}{\partial \tilde{u}^{(A D)}} \\
0 & 0 & 0 & 0 & \frac{\partial U^{(A D)}}{\partial \tilde{u}^{(A D)}}
\end{array}\right|_{o p}\right.
$$

Approach \& Methods: Final Matrix Assembly

- D-matrices (included in G) impact
 all matrices of coupled system, highlighting important role of direct feedthrough
- While $A^{(E D)}$ contains mass, stiffness, \& damping of ElastoDyn structural model only, full-system A contains mass, stiffness, \& damping associated w/ full-system coupled aero-servo-elastics, including coupling to BeamDyn mass, stiffness, \& damping \& aerodynamic stiffness \& damping

Results - Fixed-Free \& Free-Free Beams

Fixed-free

BEAMDYN RESULTS: FIXED-FREE BEAM (REFINE=30)
\ldots FAST prediction:1st mode - FAST prediction: 2 nd mode ——FAST prediction:3rd mode

- Analytical:1st mode \quad - Analytical: 2nd mode \quad - Analytical: 3rd mode
- Note: Strong sensitivity to output precision

Mode Analytical Lineariz'n BD Summary File

25

Fixed-Free Beam (Hz):

1	0.5842	0.5838
2	0.5842	0.5938
3	3.6607	3.6584
4	3.6607	3.6584
5	10.2512	10.2365
6	10.2512	10.2365
Free-Free Beam	$(\mathrm{Hz}):$	
1	3.7171	3.6579
2	3.7171	3.6579
3	10.2465	10.1808
4	10.2465	10.1808
5	20.0873	19.9459
6	20.0873	19.9459

Results - Campbell Diagram of NREL. 5-MW Turbine

- Modules enabled:
- ElastoDyn or ElastoDyn + BeamDyn
- ServoDyn
- Approach
(for each rotor speed):

1) Find periodic steadystate OP
2) Linearize
3) MBC
4) Azimuth-average
5) Eigenanalysis
6) Extract natural frequencies \& damping

Results: Campbell Diagram of NREL 5-MW Turbine w/ Aero

NREL Onshore 5MW Turbine (ElastoDyn)

- Modules enabled: ElastoDyn + BeamDyn, ServoDyn, AeroDyn
- Approach (for each wind speed): Define rotor speed \& blade-pitch angle \rightarrow Find periodic steady-state OP \rightarrow Linearize \rightarrow MBC \rightarrow Azimuth-average \rightarrow Eigenanalysis \rightarrow Extract natural frequencies \& damping ratios

Conclusions \& Future Work

- Conclusions:
- Linearization of underlying nonlinear windsystem equations advantageous to:
- Understand system response
- Exploit well-established methods/tools for analyzing linear systems
- Linearization functionality has been expanded to aeroelastically tailored rotors w/n OpenFAST
- Future work:
- Publish journal article on development \& results
- Improved OP through static-equilibrium, steadystate, or periodic steady-state determination
- Eigenmode automation \& visualization
- Linearization functionality for:
- Other important features (e.g. unsteady aerodynamics of AeroDyn)
- Other offshore functionality (SubDyn, etc.)
- New features as they are developed

Carpe Ventum!

Jason Jonkman, Ph.D. +1 (303) 384-7026 jason.jonkman@nrel.gov

www.nrel.gov

ENVISION

[^0]: NATIONAL RENEWABLE ENERGY LABORATORY

