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FAST Modular Framework for Wind Turbine

Simulation: New Algorithms and Numerical Examples∗

Michael A. Sprague†, Jason M. Jonkman‡,

and Bonnie J. Jonkman§

National Renewable Energy Laboratory, Golden, Colorado, 80401, USA

Over the past few years, the FAST wind turbine simulation tool has undergone a major
restructuring. FAST is now, at its core, an algorithm and software framework for coupling
time-dependent multi-physics modules relevant to computer-aided engineering (CAE) of
wind turbines. Each module, which represents one or more turbine components or physics
control volumes, is constituted by a mathematical model composed of time-dependent con-
straint and/or differential equations that are typically nonlinear. Under this new modular
form, modules can interact through matching or non-matching spatial meshes and can be
time advanced with different time steps and different time integrators. Sharing of data be-
tween modules is accomplished with a predictor-corrector approach, which allows for either
implicit or explicit time integration within each module. This new modularity positions
FAST as a backbone for coupling both high-fidelity and engineering-level wind turbine
physics models. In this paper, we describe new features of the FAST modular framework.
In particular, we describe a new mixed-time-step algorithm, sparse-matrix storage, a di-
rect solver for sparse linear systems, and interpolation of rotation fields in space for mesh
mapping and in time for time advancement. We also show several numerical examples that
demonstrate the performance and flexibility of the FAST framework, and we use those
results to provide modeling guidance to users.

I. Introduction

The wind turbine industry relies heavily on CAE tools for analyzing wind turbine performance, load-
ing, and stability. Over the past two decades, the U.S. Department of Energy has sponsored the National
Renewable Energy Laboratory’s (NREL’s) development of CAE tools for wind turbine analysis. NREL’s
premier tool is FAST,1 which is a modular assembly of advanced CAE codes. FAST is an open-source,
professional-grade software package. FAST encompasses modules for aerodynamics (AeroDyn2, 3), substruc-
ture hydrodynamics (HydroDyn4, 5) for offshore systems, control and electrical systems (ServoDyn), and
structural dynamics (ElastoDyn). Blade modeling capabilities are currently being augmented with addition
of the BeamDyn6 module, which is a high-fidelity code appropriate for highly flexible composite blades.
The modules are coupled to allow for nonlinear analysis of aero-hydro-servo-elastic interactions in the time
domain. The FAST tool enables the analysis of a range of wind turbine configurations, including two- or
three-blade horizontal-axis rotors, pitch or stall regulation, rigid or teetering hub, upwind or downwind ro-
tor, and lattice or tubular towers. A wind turbine (or wind plant) can be modeled on land or offshore on
fixed-bottom or floating substructures.

∗The submitted manuscript has been offered by employees of the Alliance for Sustainable Energy, LLC (Alliance), a contractor
of the U.S. Government under Contract No. DE-AC36-08GO28308. Accordingly, the U.S. Government and Alliance retain a
nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for
U.S. Government purposes.

†Senior Scientist, Computational Science Center, 15013 Denver West Parkway, Golden, CO 80401, AIAA Professional
Member.

‡Senior Engineer, National Wind Technology Center, 15013 Denver West Parkway, Golden, CO 80401, AIAA Professional
Member.

§Senior Scientist, National Wind Technology Center, 15013 Denver West Parkway, Golden, CO 80401, AIAA Professional
Member.
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This work is motivated by a major restructuring of the FAST tool suite, which is described in Jonkman.7

FAST-restructuring goals include (1) improving the ability to read, implement, and maintain source code;
(2) increasing module sharing and shared-code development across the wind community; (3) improving
numerical performance and robustness; and (4) greatly enhancing flexibility and expandability to enable
further developments of functionality without the need to recode established modules. It is envisioned that
the new modularization framework will transform FAST into a powerful, robust, and flexible wind turbine
modeling tool with a large number of developers and a range of modeling fidelities across the aerodynamic,
hydrodynamic, servo-dynamic, and structural-dynamic components.

In general, when modeling wind turbine multi-physics, each physics is represented as a system of non-
linear, time-dependent equations. These equations may be some combination of partial-differential equa-
tions (PDEs), ordinary-differential equations (ODEs), or, more generally, differential and algebraic equa-
tions (DAEs). Here, we restrict our scope to situations where spatial differential operators have been dis-
cretized and only temporal differential operators and/or algebraic constraints remain. This is known as
semi-discretization or the method-of-lines approach in numerical PDE analysis.8

In Gasmi et al.,9 we outlined our chosen taxonomy for the various approaches to multi-physics modeling
and numerical simulation; Figure 1 summarizes that taxonomy. In that paper we focused on loose temporal
coupling of partitioned models, where each module was time integrated separately, but in lock step, and
where information was passed between modules at each time step. For explicit coupling, all modules were
time advanced from known information. For implicit coupling, the time advancement of one or more modules
depends on the data from other modules at the end of a time step. We introduced a predictor-corrector
(PC) approach for implicit coupling. We found that the PC approach was more stable and was, in general,
significantly more accurate than explicit coupling (when one or more modules had an implicit dependence on
other-module solutions). Loose coupling is appealing because it allows modules to use spatial and temporal
grids and ODE/DAE time integrators that are chosen to accurately represent a module’s physics, and not to
accommodate the grid of another module. Further, it allows for the use of existing software for a particular
module. Alternatively, in a tightly coupled system, solutions to all equations must be time advanced with
the same time step and same time integrator; use of existing software is problematic. Readers are referred
to Felippa et al.10 for a discussion of the benefits of loose coupling of partitions over tight coupling.

Multi−Physics
System

Monolithic
Math Model

Partitioned
Math Model

Tight Coupling

Loose Coupling

Implicitly Coupled

Explicitly Coupled

Figure 1. Schematic illustrating our “taxonomy” for models that describe a multi-physics systems.

In Sprague et al.,11 we greatly expanded and improved upon the coupling strategies described in Gasmi
et al.9 Namely, we enhanced the numerical algorithm to handle non-matching temporal and spatial meshes,
although noted limitations included mixed time steps based only on time step subcycling and the absence of
interpolation of rotation fields, relying instead on a nearest-neighbor approach. In this paper, we describe
new features of the FAST modular framework. In particular, we describe a new mixed-time-step algorithm
supporting module steps both smaller than and larger than the coupling step, sparse-matrix storage, a direct
solver for sparse linear systems, and interpolation of rotation fields in space (for mesh mapping) and in time
(for time advancement). We also show several numerical examples that demonstrate the performance and
flexibility of the FAST framework, and we use those results to provide modeling guidance to users.

II. Formulation

In this section we present a general framework for describing time-dependent partitioned systems that is
adopted by the new modular framework in FAST.7 The formulation described here is an extension of that
described in Sprague et al.11 The interface matching for non-matching spatial meshes is largely unchanged
(Section II.B), except for the addition of a rigorous algorithm for the interpolation and extrapolation of
rotation, which is described in Section II.C. In Sprague et al.11 we described an algorithm where each
module was independently time advanced with a time increment that was less than, or equal to, the global
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interaction time increment. Interaction between modules was handled with a predictor-corrector approach.
In Section II.D we extend that algorithm to allow modules to have a larger time increment than the global
interaction increment. The purpose of this “large step” option is to accelerate simulations involving modules
that evolve on much slower timescales than the rest of the system. Finally, in Section II.E, we describe our
implementation of an open-source sparse-system direct solver.

A. Partitioned-System Representation

We assume that the entire multi-physics system (i.e., the wind turbine) is subdivided into N partitions
as described in Jonkman7 and Sprague et al.11 Further, we assume that a method-of-lines approach (or
semi-discretization) has been followed, where PDE partition models have been reduced to time-dependent
ODEs, or, more generally, DAEs, through numerical discretization of spatial operators. For example, spatial
differential operators can be approximated through finite-element or finite-difference discretization. Under
this approach, each partition model can be represented in a general DAE form:

( )
( (ẋ i) = (X i) t,x i), d,(i)x , (i), (z u i) , (1)

( )
d,(i) d,(i) (i) (i) d,(i)

= , )x (i) X m , ( ) (x x
(

i , i

m +1 m( ) z ,u i , (2)
)

= (i) t , (i) , d,( (0 i) (Z x , i)z ,u i)x , (3)
( )

(y i) = (Y i) t , (x i) ,xd,(i) , (z i), (i)u , (4)

where the superscript in parentheses i ∈ {1, 2, . . . , N} corresponds to the ith partition; X(i), Xd,(i), Z(i), and
Y(i) are multi-variable vector functions, corresponding to the continuous-state, discrete-state, constraint-
state, and output equations, respectively; x(i), xd,(i), and z(i), are the continuous-state, discrete-state, and
constraint-state dependent variables, respectively; y(i) is the output-vector variable; u(i) is a vector of inputs
derived from outputs (and, in general, inputs) of all coupled partitions. For the discrete states, m(i) denotes
the position in time (t = m(i)∆t(i), for m(i) ∈ {0, 1, . . .}); values are calculated at fixed intervals ∆t(i) and
are constant over m(i)∆t(i) ≤ t < (m(i) + 1)∆t(i) (see Jonkman7 for more details). The input to partition i
is determined through the additional implicit input-output relationship

( )
= (i) (U t , 1)u , . . . , (u N) , (1)0 y , . . . , (y N) , (5)

where it is assumed that “mapping” of non-matching inputs and outputs is embodied in the input-output
relationship. Equations (1)–(5) for i ∈ {1, . . . , N} constitute what we consider a partitioned-system repre-

sentation. We describe some simple examples of systems in this partitioned representation below.
As described in the Introduction, a goal of the new modularized FAST framework is to allow for non-

matching spatial and temporal meshes. This is aimed at modeling flexibility and simulation efficiency; each
partition can be spatially and temporally refined independently of other partitions. However, partition
coupling can introduce new physics that require additional refinement in time and/or space of the coupled
partitions for stability and/or accuracy requirements. We describe below our methods for non-matching
spatial and temporal meshes.

B. Non-Matching Spatial Meshes: Interface Matching

In this section we describe the algorithms used to couple non-matching spatial meshes. The information
described here is largely taken from our earlier work,11 and is included for completeness.

We focus on partition communication where data transfer occurs through domain interfaces (often cor-
responding to the domain boundary), which are zero-, one-, two-, or three-dimensional (0D, 1D, 2D, or 3D)
entities (located in three-dimensional space). For example, a wind turbine blade domain might be repre-
sented as an assembly of 2D-shell and 3D-volume finite elements. Its domain boundary, and its interface with
other modules, would be surface elements. Alternatively, a blade could be modeled as an assembly of beam
elements, and its interface would be composed of line elements that may interact with an aerodynamic mod-
ule, and a point element that may interact with the wind turbine hub module. Aerodynamic response may
be modeled at the blade-interface alone, whereby the model “domain” and interface are both represented
as surface or line elements. For higher fidelity simulations, aerodynamic response may be modeled with
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computational fluid dynamics, whereby the fluid domain and its interface would be represented as volume
and surface elements, respectively.

In the new FAST modularization framework, we are confronted potentially with the task of “matching”
extremely disparate meshes. For example, consider the fluid-structure interaction of a simplified submerged
truss structure shown schematically in Figure 2. Here, the hydrodynamic model well describes the true
“wet” boundary of the truss structure. It is composed of line elements for segments between joints and point
elements at joints. These elements take displacement, velocity, and acceleration as their input; lines and
points output distributed and point loads, respectively. The structural model could be simply an assembly of
beam elements with sectional properties that represent the full truss structure. The structural model takes
distributed and point forces as input and outputs displacement, velocity, and acceleration. As shown in the
figure, these domains are highly non-matching.

Hydrodynamic

model

model

Beam structure

Figure 2. A multi-member hydrodynamics partition overlayed on a single-beam structural partition.

To facilitate module coupling, we have equipped the FAST code with the interface elements shown in
igure 3. A spatial mesh consists of a set of nodes, their connectivity (elements), nodal reference locations
position and orientation), and one or more nodal fields, which include motion, load, and/or scalar quantities.
oint elements are physically assumed to represent rigid bodies or concentrated (lumped) loads applied on
igid bodies, Line2 elements are physically assumed to represent beams or distributed loads (per unit length)
pplied along beams, surface elements (Tri3 and Quad4) are physically assumed to represent plates/shells
r surface traction loads (per unit area) applied across plates/shells, and volume elements (Tet4, Wedge6,
nd Hex8) are physically assumed to represent solids or body loads (per unit volume) applied within solids.
otational displacement (orientation) is stored as a direction cosine matrix. Scalar quantities can include,
.g., color, temperature, or other attributes, independent of motion and load quantities. Details regarding the
omputational aspects of creation and manipulation of these entities are described in the FAST programmer’s
andbook.12

Module coupling is embodied in the creation of the “mapped” version of the input-output equation (5)

( ( ) ( )
= M,(i) t , 1i (1)0 U Mu u , . . . , (i)u , . . . ,MNi (

u u N) ,

)( ) ( ) ( )
1i (1) , . . (My y . ,Mii

y y i) , . . . ,MNi (
y y N) , (6)

here Mji
y and Mji

u are vector functions that map the interface input or output mesh, respectively, of module
onto the interface input mesh of module i. Equation (6) is written in its most general form. In most cases,
owever, it is expected that a partition’s input-output equation will depend only on its input, and the output
rom a few, or even one, other partitions. Inputs and outputs are expected to be composed of load, motion,
nd reference-position data, as well as scalar quantities.
Our mapping procedures are based on a straight-forward spatial projection between interfaces, and our

uiding principles for transferring loads and motion quantities are

1. Loads (distributed/point forces and moments) are balanced between source and destination meshes.

F
(
P
r
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g
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1

(a) Point

1

2

(b) Line2

21

3

(c) Tri3

2

4 3

1

(d) Quad4

4

1 2

3

(e) Tet4

6

1

2

3

4

5

(f) Wedge6

6

1

4 3

2

5

8 7

(g) Hex8

Figure 3. Interface-element types in the modularized FAST framework for coupling partitions.

2. Motion quantities are mapped in a physically relevant manner such that motions are properly preserved;
e.g., rigid-body motions are transferred.

3. Load and motion mappings should be conjugate.

4. When source and destination meshes are identical (same element types and element locations), there
is a one-to-one mapping of load and motion quantities.

It is our goal to create mapping algorithms for all of the entities shown in Figure 3. However, we have cur-
rently created the following algorithms: Point to Point, Line2 to Point, Point to Line2, and Line2 to Line2.
Our mapping approach is related to what is known as consistent interpolation.13, 14 Detailed qualitative de-
scriptions of motion and load mapping are given in Tables 1 and 2, respectively, for Point and Line2 elements;
quantitative theoretical formulations of the algorithms are given in the Appendix. Mapping between indepen-
dent spatial discretizations involves two steps: (1) a mapping search where nearest-neighbor nodes/elements
are found between source and destination meshes and (2) a mapping transfer where nodal field quantities
are transferred to the destination mesh from the mapped nodes of the source mesh. Augmentation of the
source mesh for load quantities of Line2 elements is needed so that loads are properly transferred in the
case of a coarsely discretized source mesh mapped to a finely discretized destination mesh. The mapping
transfers for load quantities of Line2 elements involve lumping distributed source loads to point loads, split-
ting the point loads while transferring to destination loads, and transforming the destination point loads to
distributed loads. This multi-step procedure is used to ensure that the first guiding principle is maintained
even when the source and destination meshes are extremely disparate. (A simple interpolation of distributed
loads would not result in the same total load transfer if the source and destination meshes are not of the
same total length.) All mapping searches are based on the reference configuration of the meshes; as such,
mapping-search procedure between source and destination meshes need only be performed at initialization
and when the reference configuration is changed, or if the intent is for one mesh to move relative to another.
These mappings may violate our fourth guiding principle in the case where a module’s mesh contains multiple
nodes at the same location in space. An example where such a mesh would be appropriate is the case where
a distributed load using Line2 elements is defined with a jump discontinuity. This pitfall can be mitigated
by introducing a small offset between the nodes of the mesh.

5 of 26

American Institute of Aeronautics and Astronautics



Table 1. Summary description of mapping algorithms for motion and scalar quantities between Point and
Line2 elements (see Figure 3).

Source: Point Source: Line2

Destination: Algorithm: Point to Point (motion mapping) Algorithm: Line2 to Point (motion mapping)
Point

Mapping search: For each Point-element node of Mapping search: For each Point-element node of
the destination mesh, a nearest-neighbor Point- the destination mesh, a nearest-neighbor Line2 el-
element node of the source mesh is found in the ref- ement of the source mesh is found¶ in the ref-
erence configuration. A source-mesh Point-element erence configuration in a manner identical to the
node may be associated with multiple destination- Line2 to Line2 motion-mapping search.
mesh Point-element nodes.

Mapping transfer: For each destination-mesh
Mapping transfer: For each destination-mesh Point-element node, motion and scalar quantities
Point-element node, motion and scalar quantities are interpolated (based on projection) and are
are transferred from its mapped source Point- transferred from its mapped source Line2 element
element node. In the case that the source and in a manner identical to the Line2 to Line2 motion-
destination Point-element nodes are not coincident mapping transfer.
in the current configuration, rotations and mo-
ment arms (including displacements) are used to
augment transferred translations such that overall
motion is maintained.

Destination: Algorithm: Point to Line2 (motion mapping) Algorithm: Line2 to Line2 (motion mapping)
Line2

Mapping search: For each node of the Line2- Mapping search: For each Line2-element node of
element destination mesh, a nearest-neighbor the destination mesh, a nearest-neighbor Line2 el-
Point-element node of the source mesh is found in ement of the source mesh is found¶ in the refer-
the reference configuration in a manner identical to ence configuration, for which the destination Line2-
the Point to Point motion-mapping search. element node projects orthogonally onto the source

Line2-element domain. A source-mesh Line2 ele-
Mapping transfer: For each destination-mesh ment may be associated with multiple destination-
Line2-element node, motion and scalar quan- mesh Line2-element nodes.
tities are transferred from its mapped source
Point-element node in a manner identical to Mapping transfer: For each destination-mesh
Point to Point motion-mapping transfer. Line2-element node, motion and scalar quantities

are interpolated (based on projection) and are
transferred from its mapped source Line2 element.
In the case that the destination Line2-element
node does not lie in its source Line2-element
domain in the current configuration, interpo-
lated rotations and moment arms (including
displacements) are used to augment transferred
translations such that overall motion is maintained.

¶If a Line2 element is not found, the mapping is aborted with an error.
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Table 2. Summary description of mapping algorithms for load quantities between Point and Line2 elements
(see Figure 3).

Source: Point Source: Line2

Destination: Algorithm: Point to Point (load mapping) Algorithm: Line2 to Point (load mapping)
Point

Mapping search: For each Point-element node of Mapping search: An augmented Line2-element
the source mesh, a nearest-neighbor Point-element source mesh is first formed by splitting the original
node of the destination mesh is found in the ref- Line2-element source mesh at each location where
erence configuration. A destination-mesh Point- a destination-mesh Point-element node projects or-
element node may be associated with multiple thogonally onto the Line2-element source mesh.
source-mesh Point-element nodes. For each node of the augmented Line2-element

source mesh, a nearest-neighbor Point-element
Mapping transfer: For each source-mesh Point- node of the destination mesh is found in the ref-
element node, forces and moments are transferred erence configuration in a manner identical to the
to its mapped destination Point-element node; Point to Point load-mapping search.
forces and moments are superposed when a desti-
nation element has more than one source element. Mapping transfer: For each Line2 element of
In the case that the source and destination Point- the augmented source mesh, distributed loads
element nodes are not coincident in the current are lumped as point loads at the two nodes (of
configuration, forces and moment arms (including the source Line2 element) such that the lumped
displacements) are used to augment transferred loads maintain the overall load balance with the
moments such that the overall load balance is Line2-element distributed loads; lumped loads
maintained. are superposed at nodes shared by multiple

elements in a manner identical to lumping in
the Line2 to Line2 load mapping. The lumped
nodal loads from each Line2-element node of
the augmented source mesh are transferred
to its mapped destination Point-element node in
a manner identical to Point to Point load mapping.

Destination: Algorithm: Point to Line2 (load mapping) Algorithm: Line2 to Line2 (load mapping)
Line2

Mapping search: For each Point-element node of Mapping search: An augmented Line2-element
the source mesh, a nearest-neighbor Line2 element source mesh is first formed by splitting the original
of the destination mesh is found‖ in the refer- Line2-element source mesh at each location where
ence configuration in a manner identical to the a destination-mesh Line2-element node projects or-
Line2 to Line2 load-mapping search (but without thogonally from the destination mesh. For each
augmentation of the source mesh). Line2-element node of the augmented source mesh,

a nearest-neighbor Line2 element of the destina-
Mapping transfer: For each source-mesh Point- tion mesh is found‖ in the reference configuration,
element node, the point load is split based on its for which the source Line2-element node projects
projected location in the mapped destination Line2 orthogonally onto the destination Line2-element
element, and is transferred as two point loads at the domain. A destination-mesh Line2 element may
destination Line2-element nodes and transformed be associated with multiple source-mesh Line2-
to distributed loads in a manner identical to the element nodes.
Line2 to Line2 load-mapping transfer (but with-
out augmentation and lumping of the source mesh). Mapping transfer: For each Line2 element of

the augmented source mesh, distributed loads
are lumped as point loads at the two nodes (of
the source Line2 element) such that the lumped
loads maintain the overall load balance with the
Line2-element distributed loads; lumped loads are
superposed at nodes shared by multiple elements.
For each Line2-element node of the augmented
source mesh, the lumped load is split based on
its projected location in the mapped destination
Line2 element, and is transferred as two point loads
at the destination Line2-element nodes. Forces
and moments are superposed when a destination
Line2-element node has more than one source
element. In the case that the source Line2-element
node does not lie in its destination Line2-element
domain in the current configuration, forces and
moment arms (including displacements) are used
to augment transferred moments such that the
overall load balance is maintained. The transferred
point loads are transformed to distributed loads
that maintain the overall load balance.

‖If a Line2 element is not found, the mapping is aborted with an error.
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C. Rotation Interpolation

Within the FAST modular framework, orientation at a given point in space and time is stored as a direction
cosine matrix (DCM). In order to accomodate non-matching spatial and temporal meshes, we require a
means of inerpolating and extrapolating orientation fields in space or time. This is complicated by the fact
that DCMs do not reside in a linear space, but are in the Lie group SO(3). For example, if one were to
linearly interpolate each entry of two DCMs at different locations in space, the resulting matrix would not,
in general, be a DCM.

We describe here our algorithm for interpolating and extrapolating DCMs, which follows closely that
described in Mota et al.15 The algorithm described here is appropriate for interpolating and extrapolating
DCMS defined at different locations in time or along a curve defined in three-dimensional space. Given
Λ1,Λ2,Λ3 ∈ SO(3), which are DCMs at time stations (or space locations) t1, t2, and t3, respectively, we
wish to determine an interpolated/extrapolated DCM Λt ∈ SO(3) at time t. The steps are as follows:

1. Calculate the logarithmic maps for each of the DCMs:

λ̃j = log (Λj) , (7)

for each j ∈ {1, 2, 3}, where λ̃j ∈ so(3) is a skew-symmetric tensor and so(3) is the Lie algebra associ-
ated with the Lie group SO(3). The logrithm of rotation is calculated as follows: For each j ∈ {1, 2, 3}
for quadratic interpolation/extrapolation, or for each j ∈ {1, 2} for linear interpolation/extrapolation:

(a) Calculate the angle of rotation as
{ }
1

θj = arccos [trace (Λj)− 1] , (8)
2

where θj ∈ [0, π].

(b) The logarithm of the rotation, log(Λj) ∈ so(3), is calculated as

 0, ( ) θj = 0,

lo
T

λ̃j = g (Λj) =
θj Λj j) , θjθ

− (Λ ∈ (0, π), (9) 2 sin( j)

±πṽj , θj = π,

where ṽj is the skew-symmetric matrix associated with vj , which is the unit-length eigenvector
of Λj associated with the eigenvalue 1 and, given v ∈ 3

R ,
 

0 −v
 3 v2 

ṽ =  v3 0 −v1  . (10)

−v2 v1 0

For the case θj = π in (9), the sign is chosen according to continuity conditions from the field in
the neighborhood.

2. Calculate λt at time t by interpolating or extrapolating with a polynomial fit to data λj (and taking
into consideration 2π periodicity), where λj is the axial vector associated with the skew-symmetric

matrix λ̃j ; j ∈ {1, 2, 3} for quadratic interpolation/extrapolation, or j ∈ {1, 2} for linear interpola-
tion/extrapolation.

3. Calculate the interpolated or extrapolated DCM at time t:
[ ]

Λt = exp λ̃t , (11)

where the matrix exponential is calculated as follows:

(a) Calculate the angle of rotation as
θt = ‖λt‖ , (12)

where ‖·‖ is the Euclidean norm.

(b) Calculate the matrix exponential as
{[ ]

˜ I, θt = 0,
Λt = exp λt =

I+ sin θt λ̃ + 1− 2
θ

)cos tλtθt θ2
˜ (13
t , θt > 0 .

t
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D. Non-Matching Temporal Meshes: Time-Step Subcycling

In our time-update algorithm, each partition is time advanced with a time increment ∆t(i) that is either
an integer multiple of, or an integer division of, ∆tI , the interaction time increment. We assume that the
first M modules have ∆t(i) > ∆tI , and the remaining N − M modules have ∆t(i) ≤ ∆tI . Partition time
increments are ∆t(i) = q(i)∆tI for i ∈ {1, . . . ,M} and ∆t(i) = ∆tI/q(i), for i ∈ {M + 1, . . . , N}, and where
q(i) is an integer for all i ∈ {1, . . . , N}.

Below is our time-advancement algorithm for a single interaction time increment ∆tI . Partition states in
{1, . . . ,M} may or not be updated depending on their time increment and the last time they were updated.
Partition states in {M + 1, . . . , N} will be updated one or more times over one interaction time increment.
In the following, tn = t0 + n∆tI , where t0 is the time at initialization, and n ∈ {0, . . . , nmax}.

Known data at beginning of step

Let n(i) = n + q(i) − q(i) for all i ∈ {1, . . . ,M} where q(i) is an integer tracking the number of interaction
time steps occurring since the last update; q(i) ∈ {0, . . . , q(i)}. Let P ≤ M be the number of partitions for
which q(i) = q(i) (i.e., those with n(i) = n) and let {k1, . . . , kP } be the set of all partition numbers for which
q(i) = q(i); the remaining Q = M − P partition numbers are stored in the set {ℓ1, . . . , ℓQ}. We assume that
the following data are known at time tn:

(i) ( ) ( )
˙

i i) (i d,(i) (i) (i) (i) (i) (i) (i)
x (i) ,xn n(i) , ẋ , . .

n(i) q(i)
. , ẋ

n(i mq(i n(i , z
−

) x
−

) , ) (i) ,yn n(i) ,y
) i) q( ) ,un( i n(i) ,u

,( 1 ,( 1) n(i i
−

)
−q(i)

,u
− − n( )

−2q(i)
,

(14)
for i ∈ {ℓ1, . . . , ℓQ},

(i) ˙ (i)
( (
˙

i) i)
˙ d,(i) (i) (i) (i) (i) (i)

xn ,xn ,x
−

(i) , . . . ,x
−

(i) ,xn , zn ,yn ,y
−

(i) ,
(u i) ,u ,u , (15)

n q n mq n q n n−q(i) n−2q(i)

for i ∈ {k1, . . . , kP }, and

(i) (i) (i) (i) (i)
xn , ˙ (i) , ˙ , . . . , ˙ , d,(i), (i) , (i) (y i)xn x 1 x m

−

xn zn n ,un ,un u
n− n −1 , n (

(i) (i)
−2 , 16)

q q

for i ∈ {M + 1, . . . , N}, where a “(−1)” subscript denotes dependence on a polynomial-extrapolated value
(see below for details), the state-derivative RHS is calculated as

( )
˙ (i) = (i) t , (i) (x i (x X , d, )x , z i) (
n n n n n , i)un , (17)

for each i ∈ {1, . . . , N}; m indicates the number of previous history points required by the underlying multi-
step DAE- or ODE-solver algorithm; m = 0 for a single-step integrator like Runge-Kutta. Also known is the
value of jmax, which is the number of correction iterations to be taken after a prediction step.

Advance certain large-step modules

Step 1L: For all i ∈ {k , . . . , k }, (i.e., those for which q(i) = q(i)), let q(i)1 P = 0 (reset counter) and calculate
predicted inputs with polynomial extraction of known inputs:

( )
(i) (i) (i)

u (i) = polyfit tn+ (i)
−

q ,∆t(i), (u i)
n+q ,( 1) n ,u

n−q(i)
,u

n−2q(i)
, (18)

Here, extrapolation is accomplished by the function polyfit, which is evaluated at the time tn+q(i) ; the

function polyfit is[ based o]n a 2nd-order polynomial fit to the 3 values that are separated in time by ∆t(i),
and it has an O (∆t(i))3 error. Polyfit can also provide a linear extrapolation when only provided two
values.

Step 2L: For all i ∈ {k1, . . . , kP }, update module states to tn+q(i) :

{
(i) (

xn , ẋ
i) ( ) ( ) ( ) ( )

} { }
( ) ( )

n , ẋ
i i i

, i
(i) , . . . , ẋ

d, i i
(i) x

−

nn−
, zn ,

q n mq ADV x
+q(i)

, ẋ
n +q(i)

,
n

(i) (i) (i) −−−→ , (19)
u ,u ,u ,X(i) ( ) ( )

(i)
−

n
−

, ( d
Xd,(i) ,

, i i
Z i) x , z

n+q ,( 1) n q(i) n+q(i) n+q(i)

where the notation on the left-hand side explicitly indicates the data accessible to the underlying integrator,
and where X(i), Xd,(i), and Z(i) express access to the continuous-state, discrete-state, and constraint right-
hand sides, respectively; ADV denotes the execution of the underlyingm-step DAE- or ODE-solver algorithm
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over a single time step ∆t(i). In the new FAST modularization, data structures are equipped to pass up to
3 input values to time-advancement routines; this allows for the routines to use either a single input value

(i) (i)
at the preferred time (e.g., u (i)

−

for an implicit integrator; un for an explicit integrator) or to use
n+q ,( 1)

multiple values to interpolate, e.g., using polyfit, to preferred time locations (as in high-order Runge-Kutta
integrators).

Step 3L: Output for the P modules are calculated as
( )

(i) (i) (i) d,(i) (i) (i)
y (i)

−

= Y tn+q(i) ,x (i) ,xn+q ( 1) n+q(i)
, z ,u

, n+q n+q(i) n+q(i),(−
, (20)

1)

for all i ∈ {k1, . . . , kP }.

Advance all small-step modules

Step 1S: Let j = 0, where j is the “correction” counter, and predict the input at tn+1 for all small-step
partitions through extrapolation (over constant ∆tI):

( )
(i) ( (i) (i)

u
n , j−

= polyfit t I i)
n+1,∆t ,u+ n ,un−1 ,u1 ( 1) n−2 , (21)

for each i ∈ {M + 1, . . . , N}, where a subscript in parentheses indicates the correction iteration.

Step 2S: Advance the solution of all small-step partitions to yield predicted state and constraint values, i.e.,
 

(i) (i) (i) (i) d,(i) (i) { } x )
n , ẋn , ẋ 1 , . . . , ẋ (i ( )

n m
−

,x 
n −

n , zn , x
(i) ADV , ẋ

i

( ) q n+1,


iq −−−→ j

,( ) n+1,(j)

( ) ( ) ( )  d,(i ,
i i ) (22)

i ) (i
u ,u ,u ,X(i) ,Xd,(i)

n
−

,Z(i) x
n 1 n+1, , z

−
(j) n+1,(j)n+1,(j 1)

for each i ∈ {M + 1, . . . , N}.

Step 3S: Determine the inputs and outputs concurrently for the N partitions through a global solve of the
(i) (i)

input-output equations at tn+1; i.e., solve for un , j
, y

n , j
for all i ∈ {1, . . . , N} by solving the nonlinear+1 ( ) +1 ( )

system composed of the following 2N expressions:
( ( ) ( )

(1) (i) (N)
0 = 1UM,(i) t i

n+1 ,Mu u
n , j

, . . . ,u , . . . ,MNi u ,+1 ( ) n+1,(j) u n+1,(j)

)( ) ( )
1 (

M i (1) )
n+1,(j , . . . ,MMi N

y y y , (23)) y n+1,(j)

for i ∈ {1, . . . , N},

{ ( )
(i) (i) d,(i) (i) (i)

Y t ,x ,x , z ,u , if q(i)
(i) + q(i)n n −(+1 n 1 +1 n+1 n

= 1+1,(j ,)
y
n+1, = )

(j (24))
polyfit t ,∆t(i)

(i) (i) (i)
n+1 ,y

n(i)+q(i)
,y ,y , else ,

,( ) i
−1 n(i) n( )

−q(i)

for i ∈ {1, . . . ,M}, and
( )

(i) (i) (i) d,(i) (i) (i)
y = Y tn+1 ,x x
n+1,(j) n+1, j

,
n 1,(j , z u( ) + ) n+1,(j ,) n+1,(j , (25))

for i ∈ {M + 1, . . . , N}.

If j = jmax, skip to Step 4; otherwise, let j = j + 1 and repeat Step 2S.

Step 4: Save all of the final variables:

(i) (i) d,(i) d,(i) (i) (i)
xn+1 = x

n , j
, xn+1 = x

n , j
, z = z ,+1 ( max) +1 ( max) n+1 n+1,(jmax)

(i) (i) (i) (i) (i) ( )
yn y x+ n ,

, n , = x+1 = u1 = u
j n , j

˙ n+1 ˙
i

+1 ( max) +1 ( max) n+1,(j , (26)
max)

(i) (i)
for each i ∈ {M + 1, . . . , N}, and, for i ∈ {ℓ , . . . , ℓ }, let y = y if q(i) = q(i)1 Q n+1 n j

,+1, − 1. Finally let( max)

q(i) = q(i) + 1 for each i ∈ {1, . . . ,M}, which completes solution advancement to time tn+1.
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E. Sparse-Matrix Storage and Sparse-Linear-System Solve

The Jacobians created for the solution of the input-output equations that govern the coupling of modules,
Eqs. (23)-(25), can be large and very sparse. In order to exploit that sparseness, FAST has been equipped
to work with the MUltifrontal Massively Parallel Solver16–18 (MUMPS), a sparse direct solver. MUMPS is
public domain software that is written in Fortran 90. It is capable of running in serial processing as well as in
shared-memory and distributed-memory parallel processing. In our implementation, we employed METIS19

as the external ordering package. With the inclusion of MUMPS, individual FAST modules also have access
to the sparse direct solver. While MUMPS can handle several input formats for sparse matrices, we chose
the “coordinate form”, which, for a given sparse matrix, requires (i) the size of the matrix, (ii) the number
of nonzero entries NZ, (iii) two integer arrays of size NZ with the row and column indices of each nonzero
entry, and (iv) a real-number array of size NZ with the nonzero entries of the matrix.

III. Illustrative Examples and Results

A. Mapping Examples

In Sprague et al.,11 we showed two examples demonstrating load and motion mapping between Point and
Line2 elements in several configurations. Here, we demonstrate the new rotation interpolation for the
Line2 to Line2 mapping algorithm. An arbitrary sign wave has been selected for illustrative purposes.
Figure 4 shows two Line2 discretizations of an interface in their reference configurations; the meshes have 10
and 30 Line 2 elements. Figure 5(a) shows how the less-refined source mesh deforms through a “flattening”;
Figure 5(b) shows how the source-mesh displacements and orientations are mapped onto the destination
mesh. Figure 6(b) shows applied forces on the more-refined source mesh; Figure 6(a) shows how those loads
are mapped onto the less-refined destination mesh. We see that our new mapping algorithm provides a
smooth mapping of both loads, motions, and orientations. However, the results are not fully intuitive. For
example, there are “dips” at the peak and trough of the sine wave in the destination mesh. These “dips”
are the result of the rigid-body rotation being included in the mesh mapping and will reduce when the mesh
refinement is more similar. Further, the mapping is such that the total force and moment are balanced
between the source and destination meshes.

B. Time-Step Subcycling Examples

1. Uncoupled Models

In order to explore the accuracy and stability of our time-stepping algorithm with “large steps”, we examine
two coupling scenarios between three partitions described below. These are the same partitions examined
in Sprague et al.11 However, the partition properties have been modified to make them appropriate for the
large-step algorithm.

Figure 7 shows three stand-alone model partitions, each being a variation on the standard damped
mechanical oscillator having some combination of inertial, damping, and stiffness terms. We examine the
numerical solution of Partition 1 coupled to Partition 2 and Partition 1 coupled to Partition 3 below, and
test the time-advancement algorithm described in Section II.D. Details for each partition, including its
governing equation (GE), states, inputs, and outputs, are listed in the figure. We note that the outputs of
all three partitions have direct feed-through of their inputs. Partition 3 has no states, but is defined solely
through its input-output relationship. Dimensionless numerical values for system parameters are listed in
Table 3. These parameters are different than those used in Sprague et al.11 in that these were chosen to
give Partition 2 a significantly smaller uncoupled frequency than Partition 1, which gives us an appropriate
test case for the “large-step” time-step algorithm described above. The undamped natural frequencies of
uncoupled Partitions 1 and 2 are 1.7 and 0.45 (dimensionless), respectively.

In Sprague et al.,11 we examined closely the accuracy and stability of the predictor-corrector coupling
algorithm where each module was time advanced with a time increment equal to or less than the inter-
action time increment. We examined different time increment sizes and the use of different fourth-order
time integrators (Adams-Bashforth, Adams-Bashforth-Moulton, and Runge-Kutta). We showed how the use
of second-order extrapolation and interpolation of input data as well as corrector steps could significantly
improve the accuracy of coupled simulations. Readers are referred to Sprague et al.11 for details. In our
numerical experiments below, we use the fourth-order Adams-Bashforth-Moulton (ABM4) algorithm for
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X

Y

(a) Reference: Line2 element
X

Y

(b) Reference: Line2 elements

Figure 4. Demonstration of the Line2 to Line2 mapping algorithm: Reference positions and orientations.
(a) Reference position and orientation of 10 Line2 interface elements, which have motion output and
force/moment input. (b) Reference positions and orientations of nodes along an assembly of 30 Line2 interface
elements, which have motion inputs and force/moment outputs. The grey arrows are shown as orthogonal
pairs illustrating orientations defined by a DCM at each node.

X

Y

(a) Source: Line2 element
X

Y

(b) Destination: Line2 elements

Figure 5. Demonstration of the Line2 to Line2 mapping algorithm: Motion mapping. (a) The source Line2
elements are “flattened” in the positive X-direction as shown. (b) Destination Line2 elements after motions
have been mapped. Orientations are shown as orthogonal pairs of purple vectors.

X

Y

(a) Destination: Line2 element
X

Y

(b) Source: Line2 elements

Figure 6. Demonstration of the Line2 to Line2 mapping algorithm: Load mapping. (b) Nodes of Source Line2
elements show values of distributed forces (turquoise vectors). (a) Destination Line2 distributed forces after
mapping. Also shown are the orientations (orthogonal pairs of purple vectors) from Figure 5.

Table 3. Parameters associated with the test simulations.

Partition 1 Partition 2 Partition 3

m(1) c(1) k(1) m(2) c(2) k(2)
(2) (2)
cc kc m(3)

1.0 0.1 3.0 1.0 0.01 0.1 0.01 0.1 2.0
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k(1)

c(1)

m(1)

d(1)(t)

f(1)(t)

GE : m(1)d̈(1) + c(1)ḋ(1) + k(1)d(1) = f (1)

x(1) =
[
d(1) ḋ(1)

]T
, xd,(1) = ∅ , z(1) = ∅ ,

u(1) =
[
f (1)

]
,

y(1) =
[
d(1) ḋ(1) d̈(1)

]T
=

[
x(1)

(
u(1) −

[
k(1) c(1)

]
x(1)

)
/m(1)

]

(a) Partition 1

k(2)k(2)
c

c(2)
c(2)c

m(2)

d(2)
c (t) d(2)(t)

f(2)(t)

GE : m(2)d̈(2) +
(
c(2) + c(2)c

)
ḋ(2) +

(
k(2) + k(2)c

)
d(2) =

c(2)c ḋ(2)c + k(2)c d(2)c

x(2) =
[
d(2) ḋ(2)

]T
, xd,(2) = ∅ , z(2) = ∅ ,

u(2) =
[
d(2)c ḋ(2)c

]T
,

y(2) =
[
f (2)

]
=
[
k
(2)
c c

(2)
c

] (
x(2) − u(2)

)

(b) Partition 2

m(3)

d̈(3)
c (t)

f(3)(t) GE : m(3)d̈(3)c = −f (3)

x(3) = ∅ , xd,(3) = ∅ , z(3) = ∅ ,

u(3) =
[
d̈(3)c

]
, y(3) =

[
f (3)

]
= −u(3)m(3)

(c) Partition 3

Figure 7. Schematics of three uncoupled model partitions. Governing equations (GEs), states, constraints,
inputs, and outputs are shown.

time advancing the solutions to the Partition 1 and Partition 2 governing equations. ABM4 is a multi-step
predictor-corrector algorithm that has an implicit dependence on other-partition data in coupled configura-
tions.

2. Partition 1 Coupled to Partition 2

We examine here results for Partition 1 coupled to Partition 2 under free-vibration conditions. Coupling is
defined by the following input-output relationships:

(1)u = (2)y , (27)
[ ]

(2) 1 0 0
= (1)u y . (28)

0 1 0

(1) (2)
The analytically determined benchmark solutions db (t) and db (t) (in a monolithically coupled form) are
shown in Figure 8 for 0 ≤ t ≤ 50 and for initial conditions

(1) (̇1) (2) ˙d (0) = 1 , d (0) = d (0) = d(2)(0) = 0 . (29)

One can see that the magnitude of the response q(2) is significantly smaller than that of q(1), which is due
to the small spring constant coupling the two masses.

Numerical experiments with ABM4 simulations of the uncoupled partitions were performed to determine
(1) (2)

the critical time increments for numerical stability. These were found to ∆tc ≈ 0.53 and ∆tc ≈ 2.0
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Figure 8. Benchmark solutions for Partition 1 and Partition 2 displacements when coupled.

for Partitions 1 and 2, respectively. We examine coupled simulations where ∆t(2) = q(2)∆tI and ∆t(1) =
∆tI , where q(2) ≥ 1. In lock-step simulation (∆t(1) = ∆t(2)), the critical time increment was found to

(1)
be ∆tlockc ≈ 0.52, which is slightly smaller than ∆tc . Figure 9 shows the critical time increment ∆tIc
normalized by the critical time increment in a coupled lock-step simulation as a function of the time-
increment multiplier q(2). We see that updating Partition 2 only every other step (q(2) = 2) has virtually no
effect on stability. However, increasing q(2) further clearly decreases the maximum allowable time increment
for stability. However, updating Partition 2 every fifth step only decreases the critical time increment by
half.
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0.8

1.0

∆
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/
∆
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c

q(2)

Figure 9. Normalized critical time increments for numerically stable coupled simulations where Partition
1 is coupled to Partition 2 and both were time integrated with ABM4. Simulations were performed with
∆t(1) = ∆tI and ∆t(2) = q(2)∆tI . For lock-step time integration, the critical time increment was ∆tlockc = 0.52.

Numerical experiments with ABM4 simulations of the coupled partitions were also performed to examine
the effect of the Partition 2 time-increment multiplier q(2) on simulation accuracy. Figure 10 shows the
normalized root-mean-square (RMS) error ǫ of simulations calculated over 0 ≤ t ≤ 50, where

√∑nmax 2

ǫ = k=0 [dk − db(tk)]∑n
, (30)

max 2
k=0 [db(tk)]

and where dk is a displacement solution known at (nmax + 1) evenly spaced time stations and db(t) is a
benchmark solution. Simulations were calculated with q(2) =1 (lock-step), 2, and 4. We see that, with
decreasing ∆tI , all methods exhibit approximate third-order accuracy, despite the underlying integrators
being fourth-order accurate. The accuracy is limited by the quadratic interpolation/extrapolation of input
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and output data (via the function polyfit), which is only third-order accurate. These results are consistent
with our earlier studies11 with Partition 1 coupled to Partition 2; there we found that only by performing
a correction step (over the partition coupling) could we restore the fourth-order accuracy of the underlying
integrators. We also see that by increasing q(2) beyond unity, we degrade significantly the accuracy (but
not the order of the method). For example, in going from q(2) = 1 to q(2) = 2 with ∆tI = 10−2, the error
increases by a factor of 4. Further, in going from q(2) = 1 to q(2) = 4, the error increases by a factor of 40.

10
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010

-12
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-8

10
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0

q(2) = 1

q(2) = 2

q(2) = 4

O
(

∆t3
)

O
(

∆t4
)

∆tI

ǫ

Figure 10. Normalized RMS error of d(1)(t) displacement histories for Partition 1 coupled to Partition 2 for
0 ≤ t ≤ 50. Partitions 1 and 2 were both time integrated with ABM4; ∆t(1) = ∆tI and ∆t(2) = q(2)∆tI . Dotted
lines show ideal third-order and fourth-order convergence rates.

3. Partition 1 Coupled to Partition 3

We examine here results for Partition 1 coupled to Partition 3 under free-vibration conditions. Coupling is
defined by the following input-output relationships:

(1) = (3)u y , (31)
[ ]

(3)u = (1)0 0 1 y . (32)

This coupling is effectively that of a rigid-body connection between the two masses. As such, rigorous solution
of the input-output equations is necessary for numerical stability and accuracy. The analytically determined

(1)
benchmark solution db (t) (in a monolithically coupled form) is shown in Figure 11 for 0 ≤ t ≤ 100 and for
initial conditions

d(1) ˙(0) = 1 , d(1)(0) = 0 . (33)

We performed numerical experiments to examine the numerical stability of the coupled system as in the
previous subsection. In lock-step time integration we found the critical time increment to be ∆tlockc = 0.36.
Figure 12 shows how increasing the time-increment multiplier q(3) decreases the allowable time increment
for stable solutions (this decrease goes approximately as 1/q(3)). The effect is much more significant in this
system, which has a rigid connection, compared to the previous system that was connected with a “soft”
spring.

Figure 13 shows the normalized RMS error ǫ of d(1) for simulations calculated over 0 ≤ t ≤ 100. Again we
see that all simulations exhibit third-order convergence and we see how increasing q(3) decreases significantly
the accuracy with trends similar to those shown in Figure 10 for Partition 1 coupled to Partition 2.

C. Sparse-matrix solver

We examined simulation times for three of the FAST certification tests. Jacobians for the input-output
equations governing the coupling of modules were calculated with finite differences; the linear systems were
either stored in full and solved with LAPACK,20 or were stored sparsely and solved with MUMPS. Each
Jacobian was only factored once for each simulation. For our CPU timing tests, we ran the three fixed-bottom
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Figure 11. Benchmark solution for Partition 1 when coupled to Partition 3.
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Figure 12. Normalized critical time increment for numerically stable coupled simulations where Partition
1 is coupled to Partition 3 and both were time integrated with ABM4. Simulations were performed with
∆t(1) = ∆tI and ∆t(3) = q(3)∆tI . For lock-step time integration, the critical time increment was ∆tlockc = 0.36.
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Figure 13. Normalized RMS error of u(1)(t) displacement histories for Partition 1 coupled to Partition 3 for
0 ≤ t ≤ 100. Partitions 1 and 3 were both time integrated with ABM4; ∆t(1) = ∆tI and ∆t(3) = q(3)∆tI . Dotted
lines show ideal third-order and fourth-order convergence rates.
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offshore models (Tests 19-21) that are distributed with FAST v8.09.00. Test 19 is a shortened version of load
case 5.2 from OC3 Phase I,21 using a different turbulent wind file. Test 20 is a slightly shortened version of
load case 5.1 from OC3 Phase III.21 Test 21 is similar to load case 5.7 from OC4 Phase I,22 but using a 12
m/s turbulent wind file (instead of 18 m/s) and a significant wave height of 8 m (instead of 6 m).

Table 4 shows matrix information and timing results for the three tests cases for one minute of simulated
time. For the smallest system, Test 19, there was little timing difference between the dense LAPACK solve
and the sparse MUMPS solve. For Test 20, we see that MUMPS factorization was actually longer than that
for LAPACK, whereas those times were similar for Test 21. Regardless, MUMPS provided solve times and
and total CPU times that were signficantly less than required by LAPACK.

Table 4. Matrix and timing data for three FAST certification tests for one minute of simulated time; calculations
were performed in serial processing with LAPACK (full matrix storage and solution) and MUMPS (sparse
matrix storage and solution).

FAST Certification Tests

19: OC3 20: OC3 21: OC4

Monopile Tripod Jacket

Simulation CPU Time (LAPACK) 0.5 min 4.2 min 10.0 min

Simulation CPU Time (MUMPS) 0.5 min 3.3 min 7.6 min

Jacobian Rank 498 4860 9618

Sparsity (% full) 1% 13% 8%

MUMPS Factorization Time 0.02 s 5.2 s 13.7 s

LAPACK Factorization Time 0.00 s 1.6 s 12.9 s

MUMPS Solve Time per simulated sec 0.03 s 0.8 s 2.8 s

LAPCK Solve Time per simulated sec 0.03 s 1.8 s 5.2 s

IV. Conclusion and Future Work

In this paper we described methods for numerical time integration of multi-physics systems composed
of loosely coupled partitions in the FAST modular wind turbine CAE tool. The methods described are
appropriate for time integration of modules that have non-matching spatial and temporal grids. We described
a suite of element types for defining the discrete spatial interface of a module, which is required to interact
with other modules. We provided detailed descriptions of the load and motion algorithms between 2-node
line elements and point elements. A significant feature of these algorithms is in their ability to couple highly
disparate spatial meshes. For non-matching temporal grids, we expanded the algorithm first described
in Sprague et al.11 The updated time-stepping algorithm allows modules to be time advanced with an
increment that is smaller or larger than a given “interaction” time increment. For modules with increments
equal to or smaller than the interaction time increment, a predictor-corrector option is provided. For those
simulations, a correction step can significantly increase accuracy and stability. For modules with increments
larger than the interaction increment, we do not allow correction of states. Numerical experiments showed
that partitions with significantly different critical increments could be stably integrated with large sub-
cycling ratios. However, the most accuracy was achieved when modules were time integrated in lock step.
Whether or not it is advisable to perform simulations with mis-matched time increments depends on the
particular modules, their computational cost relative to other modules, and their stiffness/damping/inertia
characteristics. Planned future work includes finalization of the mapping algorithms for all of the element
types shown in Figure 3. We will also examine the combined use of our algorithms for more complex systems,
where non-matching spatial and temporal grids are present.
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Appendix: Equations for Mapping Algorithms

A. Introduction

This appendix describes in detail the theoretical formulation of the mapping algorithms for Point to Point,
Line2 to Line2, Point to Line2, and Line2 to Point, based on the algorithms outlined in Tables 1 and 2. The
mapping search algorithms are presented first in Sections B though D, and are followed by mapping transfer
algorithms in Sections E through G. Separate subsections are given for the algorithms of motion and scalar
quantities and the algorithms of load quantities. Please note the following conventions used throughout this
appendix:

• All vectors are 3×1 and are denoted with an over arrow. Variables without an over arrow denote
scalars or 3×3 matrices.

• All vectors are expressed in the global inertial-frame coordinate system (not in a local coordinate
system).

• All nodal position and motion quantities are absolute (expressed in the global inertial frame), except for
the translational displacements of a node, which are expressed relative to the node reference position.

• All nodal rotations are expressed as 3×3 direction cosine matrices (containing the three components of
each of three orthogonal unit vectors of a local coordinate system) and large rotations are permitted
without a loss of accuracy (no small-angle assumptions are employed). While direction cosine matrices
take nine dependent values to express three independent angles, direction cosine matrices are chosen
to express nodal rotations because (1) they uniquely represent a given rotation unlike other rotational
parameterizations, such as Euler angles, which depend on the rotation sequence, and (2) they can be
used directly through matrix multiplication in the mapping transfer without computationally expensive
trigonometric operations. All direction cosine matrices are absolute and orthonormal, and are defined
such that premultiplication with a vector expressed in the global inertial-frame transforms the vector
to a local coordinate system. Because a direction cosine matrix is orthonormal, the matrix inverse is
the transpose of the matrix, so, premultiplication of the matrix-transpose with a vector expressed in a
local coordinate system transforms the vector to the global inertial frame.

• No Line2 elements of the destination or source meshes can connect collocated nodes to avoid division-
by-zero errors in the mapping-search equations; see Eqs. (36), (37), and (39) below.

Notation

~aD and ~aS : Translational acceleration (absolute) of a node of the destination and source meshes, re-
spectively

d: distance

~FD ~and FS : Concentrated (lumped) force of a node of the destination and source meshes, respectively

~fD ~and fS : Distributed force (per unit length) of a node of a Line2 element of the destination and
source meshes, respectively

I: Identity matrix

D S
ℓ and ℓ : Normalized location within a Line2 element of the destination and source meshes, respec-

tively

~MD ~and MS : Concentrated (lumped) moment of a node of the destination and source meshes, respec-
tively

m~ D and m~ S : Distributed moment (per unit length) of a node of a Line2 element of the destination and
source meshes, respectively

p~D and p~S : Displaced position (absolute) of a node of the destination and source meshes, respectively
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p~DR and p~SR: Reference position (absolute) of a node of the destination and source meshes, respectively

SD and SS : Scalar quantity of a node of the destination and source meshes, respectively

~uD and ~uS: Translational displacement (relative) of a node of the destination and source meshes, re-
spectively

~vD and ~vS : Translational velocity (absolute) of a node of the destination and source meshes, respec-
tively

XY Z: Axes of the global inertial frame

α~D and α~S : Rotational acceleration (absolute) of a node of the destination and source meshes, respec-
tively

ΛD and ΛS : Displaced rotation (absolute orientation; direction cosine matrix) of a node of the destina-
tion and source meshes, respectively

ΛDR and ΛSR: Reference rotation (absolute orientation; direction cosine matrix) of a node of the destina-
tion and source meshes, respectively

~ωD and ~ωS : Rotational velocity (absolute) of a node of the destination and source meshes, respectively

B. Point to Point Mapping Search

1. Motion and Scalar Quantities

For each Point-element node of the destination mesh, a nearest-neighbor Point-element node of the source
mesh is found in the reference configuration. A source-mesh Point-element node may be associated with
multiple destination-mesh Point-element nodes. That is, for each node of the destination mesh, the node
of the source mesh that is the minimum distance away is found, calculated as distance in the reference
configuration, d ≥ 0, where ∥ ∥

d = ∥p~SR − ~pDR∥ , (34)
2

‖ · ‖2 denotes the vector two-norm (vector magnitude), and ~pDR and p~SR contain the X,Y, Z coordinates
(absolute, relative to the global inertial-frame origin) of a node of the destination mesh and source mesh in
its reference (undisplaced) position, respectively.

2. Load Quantities

For each Point-element node of the source mesh, a nearest-neighbor Point-element node of the destination
mesh is found in the reference configuration. A destination-mesh Point-element node may be associated
with multiple source-mesh Point-element nodes. That is, for each node of the source mesh, the node of the
destination mesh that is the minimum distance away is found, calculated as distance d ≥ 0 from Eq. (34)
above, is found in the reference configuration.

C. Line2 to Line2 Mapping Search

1. Motion and Scalar Quantities

For each Line2-element node of the destination mesh, a nearest-neighbor Line2 element of the source mesh is
found in the reference configuration, for which the destination Line2-element node projects orthogonally onto
the source Line2-element domain. A source-mesh Line2 element may be associated with multiple destination-
mesh Line2-element nodes. That is, for each node of the destination mesh, an orthogonal projection is made
onto all possible Line2 elements of the source mesh and the Line2 element of the source mesh that is the
minimum distance away is found, calculated as distance in the reference configuration, d ≥ 0, where

∥ ( ) ∥∥ ∥
d = ∥ S S

p~DR − p~SR
1 1− ℓ − ~pSR

2 ℓ ∥ . (35)
2
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Here, subscripts 1 and 2, respectively, denote the 1st and 2nd nodes of the Line2 element of the source mesh,
S

0 ≤ ℓ ≤ 1 is the normalized location within the Line2 element of the source mesh where the orthogonal
projection intersects, where ( ) ( )

S p~SR
2 − p~SR

1 · p~DR − p~SR
1ℓ = ( ) ( ) , (36)

p~SR
2 − p~SR

1 · p~SR
2 − p~SR

( ) 1

S S
and p~SR

1 1− ℓ + p~SR
2 ℓ is the absolute position of the intersection point in the reference configuration.

( )
S

(Only projections between and including a Line2 element’s two nodes are considered.) The terms 1− ℓ
S

and ℓ in Eq. (35) are the linear shape functions of the 1st and 2nd nodes, respectively, of the Line2 element
of the source mesh evaluated at the intersection point. In Eq. (36), · denotes the vector dot product. If there
is no Line2 element of the source mesh that a given node of the destination mesh projects onto, whereby

S
0 ≤ ℓ ≤ 1, the mapping is aborted with an error.

2. Load Quantities

An augmented Line2-element source mesh is first formed by splitting the original Line2-element source mesh
at each location where a destination-mesh Line2-element node projects orthogonally from the destination
mesh. That is, for each Line2 element of the destination mesh and for both nodes of that element, a plane
normal to the element and including the node is formed and all possible points where Line2 elements of the
source mesh intersect this plane are found in the reference configuration. The normalized locations within a

S
Line2 element of the source mesh where this plane is intersected, 0 < ℓ < 1, are given by

( ) ( )
S p~DR

2 − p~DR
1 · p~DR − p~SR

1ℓ = ( ) ( ) . (37)
p~DR pDR

1 · S
2 − ~ p~ R

2 − p~SR
1

The augmented source mesh is formed by in(troducin)g a new node in the original source mesh at each
S S

intersection point with reference position p~SR
1 1− ℓ + p~SR

2 ℓ and splitting the associated element in the

original source mesh in two. (Only intersections between a Line2 element’s two nodes are considered. To
avoid introducing collocated nodes, new nodes are not introduced at the original node reference positions,
S S
ℓ = 0 or ℓ = 1.) No new nodes are introduced if no Line2 element of the source mesh intersect this plane.

For each Line2-element node of the augmented source mesh, a nearest-neighbor Line2 element of the
destination mesh is found in the reference configuration, for which the source Line2-element node projects
orthogonally onto the destination Line2-element domain. A destination-mesh Line2 element may be associ-
ated with multiple source-mesh Line2-element nodes. That is, for each node of the augmented source mesh,
an orthogonal projection is made onto all possible Line2 elements of the destination mesh and the Line2
element of the destination mesh that is the minimum distance away is found, calculated as distance in the
reference configuration, d ≥ 0, where

∥ ( ) ∥∥ D DSR DR ∥
d = ∥p~ − p~1 1− ℓ − ~pDR

2 ℓ ∥ , (38)
2

D
and where 0 ≤ ℓ ≤ 1 is the normalized location within the Line2 element of the destination mesh where
the orthogonal projection intersects, which is calculated as

( ) ( )
p~DR

D 2 − p~DR
1 · p~SR − p~DR

1ℓ = ( ) ( ) . (39)
p~DR − p~DR D
2 1 · p~DR p~ R

2 − 1

(Only projections between and including a Line2 element’s two nodes are considered.) If there is no Line2
element of the destination mesh that a given node of the augmented source mesh projects onto, whereby

D
0 ≤ ℓ ≤ 1, the mapping is aborted with an error.

D. Point to Line2 and Line2 to Point Mapping Search

1. Motion and Scalar Quantities

In the Point to Line2 mapping search for motion and scalar quantities, for each node of the Line2-element
destination mesh, a nearest-neighbor Point-element node of the source mesh is found in the reference con-
figuration in a manner identical to the Point to Point motion-mapping search (see Section B.1).
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In the Line2 to Point mapping search for motion and scalar quantities, for each Point-element node of the
destination mesh, a nearest-neighbor Line2 element of the source mesh is found in the reference configuration
in a manner identical to the Line2 to Line2 motion-mapping search (see Section C.1).

2. Load Quantities

In the Point to Line2 mapping search for load quantities, for each Point-element node of the source mesh, a
nearest-neighbor Line2 element of the destination mesh is found in the reference configuration in a manner
identical to the Line2 to Line2 load-mapping search (see Section C.2, but without augmentation of the source
mesh).

In the Line2 to Point mapping search for load quantities, an augmented Line2-element source mesh is
first formed by splitting the original Line2-element source mesh at each location where a destination-mesh
Point-element node projects orthogonally onto the Line2-element source mesh. That is, for each node of
the destination mesh, an orthogonal projection is made onto all possible Line2 elements of the source mesh
in the reference configuration. The normalized locations within a Line2 element of the source mesh where

S
the orthogonal projection intersects, 0 < ℓ < 1, are given by Eq. (36). The augmented source mesh
is formed by(introdu)cing a new node in the original source mesh at each intersection point with reference

S S
position ~pSR

1 1− ℓ +~pSR
2 ℓ and splitting the associated element in the original source mesh in two. (Only

projections between a Line2 element’s two nodes are considered. To avoid introducing collocated nodes, new
S S

nodes are not introduced at the original node reference positions, ℓ = 0 or ℓ = 1.) No new nodes are
introduced if there are no orthogonal projections onto a Line2 element of the source mesh.

For each node of the augmented Line2-element source mesh, a nearest-neighbor Point-element node of
the destination mesh is found in the reference configuration in a manner identical to the Point to Point
load-mapping search (see Section B.2).

E. Point to Point Mapping Transfer

1. Motion and Scalar Quantities

For each destination-mesh Point-element node, motion and scalar quantities are transferred from its mapped
source Point-element node. In the case that the source and destination Point-element nodes are not coincident
in the current configuration, rotations and moment arms (including displacements) are used to augment
transferred translations such that overall motion is maintained.

The mapping transfer of translational displacement is given by

[
~uD = ~uS

( ]
T

+ I − ΛS
)

ΛSR
(
p~SR − ~pDR

)
, (40)

where ~uD and ~uS are 3 × 1 vectors containing the X,Y, Z translational displacements (relative to the node
reference position) of a node of the destination mesh and mapped node of the source mesh, respectively,a I is
the 3× 3 identity matrix, ΛSR is the reference rotation (direction cosine matrix) of the mapped node of the
source mesh, ΛS is the displaced rotation (direction cosine matrix) of the mapped node of the source mesh,
and T denotes the transpose of a matrix. The second term on the right-hand side (RHS) of Eq. (40) represents
the translation displacement of a node of the destination mesh due to rigid-body rotation of the mapped
node of the source mesh from its reference orientation and is zero if the reference and displaced rotations of( )T
the mapped node of the source mesh are coincident (no rotational displacement), whereby ΛS ΛSR = I,
or if the reference positions of the node of the destination mesh and mapped node of the source mesh are
coincident, whereby p~DR = p~SR.

The mapping transfer of displaced rotation is given by

D
(

Λ = ΛDR ΛSR
)T

ΛS , (41)

where ΛDR is the reference rotation (direction cosine matrix) of a node of the destination mesh and ΛD is
the displaced rotation (direction cosine matrix) of that node. The node of the destination mesh need not
have the same reference orientation of the mapped node of the source mesh, but the node of the destination

aThe absolute displaced positions of a node of the destination and source meshes, respectively, are related to the reference
position and relative translational displacement of the node by ~pD = p~DR + ~uD and p~S = p~SR + ~uS , respectively.
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mesh will still rotate the same amount as the mapped node of the source mesh (as a rigid body). The node
of the destination mesh is not rotated if the reference and displaced rotations of the mapped node of the
source mesh are coincident (no rotational displacement).

The mapping transfer of translational and rotation velocities is given by

D S
[(

SR S
) ( )]

~v = ~v + p~ + ~u − p~DR + ~uD × ~ωS , (42)

ω~D = ~ωS , (43)

where ~vD and ~vS are the translational velocities of a node of the destination mesh and mapped node of the
source mesh, respectively, and ~ωD and ~ωS are the rotational velocities of a node of the destination mesh
and mapped node of the source mesh, respectively, and × denotes the vector cross product. The second
term on the RHS of Eq. (42) represents the translation velocity of a node of the destination mesh due to
the displaced offset between the node of the destination mesh and mapped node of the source mesh and the
rotational velocity of the mapped node of the source mesh.b The node of the destination mesh will rotate
the same as the mapped node of the source mesh (as a rigid body).

The mapping transfer of translational and rotation accelerations is given by

~aD = ~aS
[(

+ ~pSR + ~uS
) ( [
− ~pDR

)] { ( ) ( )] }
+ ~uD × α~S + ω~ S × ~pSR + ~uS − p~DR + ~uD × ~ωS , (44)

α~D = α~S , (45)

where ~aD and ~aS are the translational accelerations of a node of the destination mesh and mapped node of
the source mesh, respectively, and α~D and α~S are the rotational accelerations of a node of the destination
mesh and mapped node of the source mesh, respectively. The second term on the RHS of Eq. (44) represents
the tangential acceleration of a node of the destination mesh due to the displaced offset between the node
of the destination mesh and mapped node of the source mesh and the rotational acceleration of the mapped
node of the source mesh. The third term on the RHS of Eq. (44) represents the centripetal acceleration of
a node of the destination mesh due to the displaced offset between the node of the destination mesh and
mapped node of the source mesh and the rotational velocity of the mapped node of the source mesh. The
node of the destination mesh will rotate the same as the mapped node of the source mesh (as a rigid body).

The mapping transfer of scalar quantities is given by

SD = SS , (46)

where SD and SS are arrays of one or more scalar quantities of a node of the destination mesh and mapped
node of the source mesh, respectively.

2. Load Quantities

For each source-mesh Point-element node, forces and moments are transferred to its mapped destination
Point-element node; forces and moments are superposed when a destination element has more than one
source element. In the case that the source and destination Point-element nodes are not coincident in the
current configuration, forces and moment arms (including displacements) are used to augment transferred
moments such that the overall load balance is maintained.

The mapping transfer of concentrated (lumped) forces and moments,

∑
~FD ~= FS , (47)

∑{ [( ) ( )] }
~MD ~= MS + p~SR + ~uS − ~pDR ~+ ~uD × FS , (48)

~S ~where F and FD are the concentrated forces of a node of the source mesh and mapped node of the
~ ~destination mesh, respectively, and MS and MD are the concentrated moments of a node of the source mesh

and mapped node of the destination mesh, respectively. The second term on the RHS of Eq. (48) represents
the additional moment of the mapped node of the destination mesh due to the displaced offset (moment

bRearrangement of Eq. (40) reveals that
( T
~pSR + ~uS

)

−
(

p~DR + ~uD
)

=
(

ΛS
)

ΛSR
(

p~SR − p~DR
)

, so, the term involving
translational displacements of the nodes of the destination and source meshes in Eq. (42) and other mapping-transfer equations
could alternatively be written in terms of rotations of the source mesh.
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arm) between the node of the source mesh and mapped node of the destination mesh and the concentrated
force of the node of the source mesh.c The summations in Eqs. (47) and (48) denote the superposition of
loads when a destination element has more than one mapped source element.

F. Line2 to Line2 Mapping Transfer

1. Motion and Scalar Quantities

For each destination-mesh Line2-element node, motion and scalar quantities are interpolated (based on
projection) and are transferred from its mapped source Line2 element. In the case that the destination
Line2-element node does not lie in its source Line2-element domain in the current configuration, interpolated
rotations and moment arms (including displacements) are used to augment transferred translations such that
overall motion is maintained.

The mapping transfer of all motion and scalar quantities (now including orientation as described in
Section II.C), via interpolation based on the projected location in the source Line2 element, is given by

( ) ( ) ( )
S ( ) S

· = · 1− ℓ + · ℓ , (49)
1 2

( )
where the · on the left-hand side (LHS) of Eq. (49) is a place)holder fo ~uD

( r , ΛD, ~vD, ~ωD, ~aD, α~D, or

SD from the LHS of Eqs. (40) through (46), respectively, and · on the RHS of Eq. (49) is a placeholder
for the corresponding RHS of Eqs. (40) through (46), with subscripts 1 and 2, respectively, denoting the 1st

S
and 2nd nodes of the mapped Line2 element of the source mesh. ℓ used in Eq. (49) was solved via Eq.
(36) from the Line2 to Line2 mapping search for motion and scalar quantities (see Section C.1). The motion

S S
quantities are not interpolated if the projection lies on a node, whereby ℓ = 0 or ℓ = 1.

2. Load Quantities

The fields of the new nodes of the augmented source mesh are first p(o)pulated via interpolation of the fields
from the original nodes of the source mesh. That is, Eq. (49) (where · is a placeholder) is used to calculate

S
~uS ~, fS , and m~ S at the new nodes of the augmented source mesh, where ℓ was solved via Eq. (37) from

~the Line2 to Line2 mapping search for load quantities (see Section C.2), fS is the distributed force (per unit
length) of a node of a Line2 element of the source mesh, and m~ S is the distributed moment (per unit length)
of a node of a Line2 element of the source mesh.

For each Line2 element of the augmented source mesh, distributed loads are lumped as point loads at the
two nodes (of the source Line2 element) such that the lumped loads maintain the overall load balance with
the Line2-element distributed loads; lumped loads are superposed at nodes shared by multiple elements.
For each Line2-element node of the augmented source mesh, the lumped load is split based on its projected
location in the mapped destination Line2 element, and is transferred as two point loads at the destination
Line2-element nodes. Forces and moments are superposed when a destination Line2-element node has more
than one source element. In the case that the source Line2-element node does not lie in its destination
Line2-element domain in the current configuration, forces and moment arms (including displacements) are
used to augment transferred moments such that the overall load balance is maintained. The transferred
point loads are transformed to distributed loads that maintain the overall load balance.

The lumping of distributed forces and moments to concentrated point forces and moments at the two
nodes of each Line2 element of the augmented source mesh is given by

∥ ∥∑ ∥ (p~SR −
~S 2 ~pSR∥ )

1 2 ~S ~F1 = 2f1 + fS

6 2 , (50)
∥ ∥∑ ∥p~SR S )−

~S 2 ~p R∥ (
1 2 ~ ~F2 = fS

6 1 + 2fS
2 , (51)

cWhile it is rare for a single mesh to contain both motion and load quantities, the mapping transfer for moments uses both
load and translational displacement quantities. In the actual source-code implementation, this is achieved by sending multiple
meshes (one with load quantities and another with motion quantities) to the mapping-transfer routine for load quantities.
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∥ ∥ { ( )}
∑ ∥~pSR − p~SR∥ [( ) ( ~S ~S

~MS 2 1
= 2 2m~ S +m~ S + ~pSR + ~uS − p~SR

)] f + f
1 1 2 2 2 1 + ~uS 1 2

6 1 × , (52)
2

∥ ∥ { ( )}
∑ ∥~pSR

2 − p~SR∥ [( ) ( ~S ~S
~MS 1

= 2 m~ S + 2m~ S − p~SR + ~uS − p~SR + ~uS
)] f

× 1 + f2
2 1 2 2 2 1 1 , (53)

6 2

where the second term on the RHS of Eqs. (52) and (53) represents the additional lumped moment of a node
of the source mesh due to the distributed force. As shown by Eqs. (50)–(53), both nodal distributed loads of
a given Line2 element contribute to the lumped load of each node of that element. The summations in Eqs.
(50)–(53) denote the superposition of loads when a given node of the source mesh is connected to multiple
elements. Equations (50)–(53) were derived by integrating the nodal linear shape functions multiplied by
the distributed loads (including moment arms for moments) along each source element.

The mapping transfer of lumped load quantities via splitting based on the projected location in the
mapped destination Line2 element is given by

( ) ∑( )( )
D

· = · 1− ℓ , (54)
1

( ) ∑( ) D
· = · ℓ , (55)

2

( )
where · ~ ~on the LHS of E(qs.)(54) and (55) is a placeholder for FD and MD from the LHS of Eqs. (47)

and (48), respectively, and · on the RHS of Eqs. (54) and (55) is a placeholder for the corresponding
RHS of Eqs. (47) and (48) (but without the summations), with subscripts 1 and 2, respectively, denoting

D
the 1st and 2nd nodes of the mapped Line2 element of the destination mesh. ℓ used in Eqs. (54) and (55)
was solved via Eq. (39) from the Line2 to Line2 mapping search for load quantities (see Section C.2). The

D D
load quantities are not split if the projection lies on a node, whereby ℓ = 0 or ℓ = 1. The summations in
Eqs. (54) and (55) denote the superposition of loads when a destination element has more than one mapped
source element.

To transform the lumped nodes of the destination mesh to distributed loads,
∥ ∥∑ ∥ ∥ (p D )~DR − ~p R

~D 2 1
F = 2 ~
1 2fD ~

1 + fD
2 , (56)

∥ 6 ∥∑ ∥ DR )p~DR ∥ (
~D 2 − ~p1 ~F2 = 2 fD ~D

6 1 + 2f2 , (57)

∥ ∥ { ( )}
∑ ∥p~DR − p~DR∥ D ~D

~ 2 1
= 2 2m~ D D

[( ~
MD DR D

) (
DR D

)] f1 + f2
1 6 1 +m~ 2 + ~p2 + ~u2 − p~1 + ~u1 × , (58)

2
∥ ∥ { ( )}

∑ ∥p~DR
D 2 − ~pDR∥

1 D
[( ) ( )] ~fD ~D

~M = 2 + f
2 m~ 1 + 2m~ D − ~pDR + ~uD

2 − ~pDR
2 2 1 + ~uD

1 × 1 2 , (59)
6 2

~are solved inversely, where fD is the distributed force (per unit length) of a node of a Line2 element of
the destination mesh, and m~ D is the distributed moment (per unit length) of a node of a Line2 element
of the destination mesh. Akin to Eqs. (50)–(53) for the source mesh, Eqs. (56)–(59) express the lumping
of distributed forces and moments to concentrated point forces and moments at the two nodes of each
Line2 element of the destination mesh. (As implied by the summations in Eqs. (56)–(59), which denote
the superposition of loads when a given node of the destination mesh is connected to multiple elements,
the inverse of Eqs. (56)–(59) depends on the element connectivity; the inverse of Eqs. (56)–(59) cannot be
expressed in closed form until the element connectivity is defined.)

G. Point to Line2 and Line2 to Point Mapping Transfer

1. Motion and Scalar Quantities

In the Point to Line2 mapping transfer for motion and scalar quantities, for each destination-mesh Line2-
element node, motion and scalar quantities are transferred from its mapped source Point-element node in a
manner identical to Point to Point motion-mapping transfer (see Section E.1).
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In the Line2 to Point mapping transfer for motion and scalar quantities, for each destination-mesh Point-
element node, motion and scalar quantities are interpolated (based on projection) and are transferred from
its mapped source Line2 element in a manner identical to the Line2 to Line2 motion-mapping transfer (see
Section F.1).

2. Load Quantities

In the Point to Line2 mapping transfer for load quantities, for each source-mesh Point-element node, the
point load is split based on its projected location in the mapped destination Line2 element, and is trans-
ferred as two point loads at the destination Line2-element nodes and transformed to distributed loads in a
manner identical to the Line2 to Line2 load-mapping transfer (see Section F.2, but without augmentation
and lumping of the source mesh).

In the Line2 to Point mapping transfer for load quantities, the fields of the new nodes of the augmented
source mesh are first pop(ula)ted via interpolation of the fields from the original nodes of the source mesh.

~That is, Eq. (49) (where · is a placeholder) is used to calculate ~uS , fS , and m~ S at the new nodes of the
S

augmented source mesh, where ℓ was solved via Eq. (36) as discussed in the Line2 to Point mapping search
for load quantities (see Section D.2).

For each Line2 element of the augmented source mesh, distributed loads are lumped as point loads at
the two nodes (of the source Line2 element) such that the lumped loads maintain the overall load balance
with the Line2-element distributed loads; lumped loads are superposed at nodes shared by multiple elements
in a manner identical to lumping in the Line2 to Line2 load mapping (see Section F.2). The lumped nodal
loads from each Line2-element node of the augmented source mesh are transferred to its mapped destination
Point-element node in a manner identical to Point to Point load mapping (see Section E.2).
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